scholarly journals Cellulolytic activity of leached black earth for no-till in connection with the question of winter wheat diseases

2018 ◽  
pp. 37-41
Author(s):  
A.P. Shutko ◽  
◽  
E.E. Zaschepkin ◽  
L.V. Tuturzhans ◽  
V.M. Perederieva ◽  
...  
2017 ◽  
Vol 1 (92) ◽  
pp. 100-108
Author(s):  
T.S. Vinnichuk ◽  
L.M. Parminskaya ◽  
N.M. Gavrilyuk

In the article the research the results of studies of the phytosanitary state of winter wheat sowing with three soil treatments - plowing (22-24 cm), shallow (10-12 cm) and zero (no - till) with various doses of fertilizers: N56 Р16 К16 , N110-130 Р90 К110 and N145-165 Р135 К150 , without fertilizers (control) for the two predecessors - soybean and rapeseed. The influence of these methods on the development and prevalence of powdery mildew, septoriosis of leaves, root rot of winter wheat, the most common pests in the area of research - cereal flies, wheat thrips and grain sawflies. The identified measures to limit the development and spread of harmful organisms above.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 186 ◽  
Author(s):  
Beata Feledyn-Szewczyk ◽  
Janusz Smagacz ◽  
Cezary A. Kwiatkowski ◽  
Elżbieta Harasim ◽  
Andrzej Woźniak

In recent years, there has been an increasing interest around agricultural science and practice in conservation tillage systems that are compatible with sustainable agriculture. The aim of this study was to assess the qualitative and quantitative changes in weed flora and soil seed bank under reduced tillage and no-till (direct sowing) in comparison with traditional ploughing. In the crop rotation: pea/rape—winter wheat—winter wheat the number and dry weight of weeds increased with the simplification of tillage. The seed bank was the largest under direct sowing and about three times smaller in traditional ploughing. Under direct sowing, most weed seeds were accumulated in the top soil layer 0–5 cm, while in the ploughing system most weed seeds occurred in deeper layers: 5–10 and 10–20 cm. In the reduced and no-till systems, a greater percentage of perennial and invasive species, such as Conyza canadensis L., was observed. The results show that it is possible to maintain weed infestation in the no-till system at a level that does not significantly affect winter wheat yield and does not pose a threat of perennial and invasive weeds when effective herbicide protection is applied.


2007 ◽  
Vol 99 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Anatoliy G. Kravchenko ◽  
Kurt D. Thelen

2021 ◽  
Vol 285 ◽  
pp. 02027
Author(s):  
O. Yu. Kremneva ◽  
K. E. Gasiyan ◽  
A. V. Ponomarev ◽  
A. Kokhmetova ◽  
S. I. Novoseletsky

To carry out effective plant protection measures, it is necessary to take into account all the factors affecting the quality of the crop. The aim of our research was to study the degree of development of leaf diseases of winter wheat and the rate of infestation of crops, depending on the tillage method. The studies were carried out in 2019-2020 at the experimental plots of “Kuban educational farm” in Krasnodar. For the research, four experimental plots with Steppe variety of soft winter wheat were created, where various soil cultivation systems were applied: 1 - No-Till (zero technology), 2 - moldboard-free technology, 3 - recommended, 4 - moldboard technology. The article presents data on the degree of development of diseases and the degree of infestation of winter wheat plants in the crops of test plots with various tillage systems. It was found that the most preferable is the use of the recommended type of treatment, since with it the least number of diseases develops and the degree of development of pathogens is reduced by 2-3 times in comparison with other options. The influence of the tillage method on the number and composition of phytopathogen spores was revealed.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.


Author(s):  
Е. V. Mikhalev ◽  
◽  
N.А. Borisov ◽  
N. А. Mineeva ◽  
◽  
...  

The research aim is to identify the most energy-saving and cost-effective technology for winter wheat cultivation. The maximum moisture content of soil was recorded when it was processed using Mini-till technology – from 17.2% to 17.9%, and the lowest - with traditional technology – from 15.7% to 16.4%. The lowest soil density with traditional winter wheat technology is both on the background with fertilizer (1.18%) and on the background without fertilizer (1.21%). The lowest contamination of crops with traditional technology without mineral fertilizers (42 pcs/м2). With the Mini-till technology, the total blockage increased to 51pcs/м2, and with the No-till technology, it was maximum- 128 pcs/м2. Against the mineral fertilizers, the same tendency of total blockage-from – from 40 pcs/м2 to 132 pcs/м2, respectively. With No-till technology, the total plant damage increased from 17.0 % to 14.6 %, with traditional treatment – from 12.4% to 10.1%, and with Mini-till technology-from 12.7% to 9.6%. The yield of winter wheat when using traditional plowing against the background of mineral fertilizer is 3.59 t / ha, and against the background without mineral fertilizer – 2.24 t / ha. The yield of Mini-till technology for mineral background is 3.13 t / ha, and without fertilizers-1.81 t / ha. With the No-till technology, the winter wheat yield is 1.69 t/ha, and without fertilizers – 1.11 t/ha. The highest level of profitability with Mini-till technology against the background of mineral fertilizers-73.2%.


1991 ◽  
Vol 5 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Gail A. Wicks ◽  
Robert N. Klein

We conducted research to determine if soybeans can be grown successfully in a no-till environment, in the semi-arid areas of the central Great Plains near North Platte, NE. Soybeans planted no-till into winter wheat stubble that was sprayed with glyphosate yielded more than when planted into soil that was rototilled in a winter wheat-soybean-fallow rotation. However, grain yield averaged only 420 kg ha-1during 1975, 1976, and 1977. No-till soybean grown in a winter wheat-grain sorghum-soybean rotation during 1982 through 1985 yielded an average of 1370 kg ha-1. Low yields were associated with lack of precipitation during the fallow period after winter wheat harvest or grain sorghum harvest and during the soybean pod elongation and filling period. Several herbicides gave excellent weed control in soybeans when applied either after wheat harvest, early preplant, or at planting time. None of the herbicides persisted long enough to reduce grain yields of winter wheat planted into the soybean residue. With present production costs these nonirrigated rotations are not economical in the semi-arid region of the central Great Plains of the United States.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Ahmed Laamrani ◽  
Paul R. Voroney ◽  
Aaron A. Berg ◽  
Adam W. Gillespie ◽  
Michael March ◽  
...  

The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document