scholarly journals Numerical Modeling of Soil Erosion with Three Wall Laws at the Soil-Water Interface

2021 ◽  
Vol 7 (9) ◽  
pp. 1546-1556
Author(s):  
Hatim El Assad ◽  
Benaissa Kissi ◽  
Rhanim Hassan ◽  
Parron Vera Miguel Angel ◽  
Rubio Cintas Maria Dolores ◽  
...  

In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. Doi: 10.28991/cej-2021-03091742 Full Text: PDF

1992 ◽  
Vol 114 (4) ◽  
pp. 515-520 ◽  
Author(s):  
L. H. Back ◽  
D. W. Crawford

Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.


2011 ◽  
Vol 8 (64) ◽  
pp. 1594-1603 ◽  
Author(s):  
A. Kazakidi ◽  
A. M. Plata ◽  
S. J. Sherwin ◽  
P. D. Weinberg

Atherosclerotic lesions have a patchy distribution within arteries that suggests a controlling influence of haemodynamic stresses on their development. The distribution near aortic branches varies with age and species, perhaps reflecting differences in these stresses. Our previous work, which assumed steady flow, revealed a dependence of wall shear stress (WSS) patterns on Reynolds number and side-branch flow rate. Here, we examine effects of pulsatile flow. Flow and WSS patterns were computed by applying high-order unstructured spectral/hp element methods to the Newtonian incompressible Navier–Stokes equations in a geometrically simplified model of an aorto-intercostal junction. The effect of pulsatile but non-reversing side-branch flow was small; the aortic WSS pattern resembled that obtained under steady flow conditions, with high WSS upstream and downstream of the branch. When flow in the side branch or in the aortic near-wall region reversed during part of the cycle, significantly different instantaneous patterns were generated, with low WSS appearing upstream and downstream. Time-averaged WSS was similar to the steady flow case, reflecting the short duration of these events, but patterns of the oscillatory shear index for reversing aortic near-wall flow were profoundly altered. Effects of reverse flow may help explain the different distributions of lesions.


2015 ◽  
Vol 774 ◽  
pp. 311-323 ◽  
Author(s):  
G. Mengaldo ◽  
M. Kravtsova ◽  
A. I. Ruban ◽  
S. J. Sherwin

This paper is concerned with the boundary-layer separation in subsonic and transonic flows caused by a two-dimensional isolated wall roughness. The process of the separation is analysed by means of two approaches: the direct numerical simulation (DNS) of the flow using the Navier–Stokes equations, and the numerical solution of the triple-deck equations. Since the triple-deck theory relies on the assumption that the Reynolds number ($\mathit{Re}$) is large, we performed the Navier–Stokes calculations at $\mathit{Re}=4\times 10^{5}$ based on the distance of the roughness element from the leading edge of the flat plate. This $\mathit{Re}$ is also relevant for aeronautical applications. Two sets of calculation were conducted with the free-stream Mach number $\mathit{Ma}_{\infty }=0.5$ and $\mathit{Ma}_{\infty }=0.87$. We used different roughness element heights, some of which were large enough to cause a well-developed separation region behind the roughness. We found that the two approaches generally compare well with one another in terms of wall shear stress, longitudinal pressure gradient and detachment/reattachment points of the separation bubbles (when present). The main differences were found in proximity to the centre of the roughness element, where the wall shear stress and longitudinal pressure gradient predicted by the triple-deck theory are noticeably different from those predicted by DNS. In addition, DNS predicts slightly longer separation regions.


1994 ◽  
Vol 271 ◽  
pp. 1-16 ◽  
Author(s):  
Peter Y. Huang ◽  
Jimmy Feng ◽  
Daniel D. Joseph

We do a direct two-dimensional finite-elment simulation of the Navier–Stokes equations and compute the forces which turn an ellipse settling in a vertical channel of viscous fluid in a regime in which the ellipse oscillates under the action of vortex shedding. Turning this way and that is induced by large and unequal values of negative pressure at the rear separation points which are here identified with the two points on the back face where the shear stress vanishes. The main restoring mechanism which turns the broadside of the ellipse perpendicular to the fall is the high pressure at the ‘stagnation point’ on the front face, as in potential flow, which is here identified with the one point on the front face where the shear stress vanishes.


2019 ◽  
Vol 872 ◽  
pp. 407-437 ◽  
Author(s):  
M. Muradoglu ◽  
F. Romanò ◽  
H. Fujioka ◽  
J. B. Grotberg

Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied computationally using a front-tracking method. The plug is driven by an applied constant pressure in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier–Stokes equations are solved in the front-tracking framework. The numerical method is first validated for a surfactant-free case and the results are found to be in good agreement with the earlier simulations of Fujioka et al. (Phys. Fluids, vol. 20, 2008, 062104) and Hassan et al. (Intl J. Numer. Meth. Fluids, vol. 67, 2011, pp. 1373–1392). Then extensive simulations are performed to investigate the effects of surfactant on the mechanical stresses that could be injurious to epithelial cells, such as pressure and shear stress. It is found that the liquid plug ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount of surfactant significantly reduces the pressure and shear stress and thus improves cell survivability. However, addition of surfactant also delays the plug rupture and thus airway reopening.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Mongkol Kaewbumrung ◽  
Somsak Orankitjaroen ◽  
Pichit Boonkrong ◽  
Buraskorn Nuntadilok ◽  
Benchawan Wiwatanapataphee

A mathematical model of dispersed bioparticle-blood flow through the stenosed coronary artery under the pulsatile boundary conditions is proposed. Blood is assumed to be an incompressible non-Newtonian fluid and its flow is considered as turbulence described by the Reynolds-averaged Navier-Stokes equations. Bioparticles are assumed to be spherical shape with the same density as blood, and their translation and rotational motions are governed by Newtonian equations. Impact of particle movement on the blood velocity, the pressure distribution, and the wall shear stress distribution in three different severity degrees of stenosis including 25%, 50%, and 75% are investigated through the numerical simulation using ANSYS 18.2. Increasing degree of stenosis severity results in higher values of the pressure drop and wall shear stresses. The higher level of bioparticle motion directly varies with the pressure drop and wall shear stress. The area of coronary artery with higher density of bioparticles also presents the higher wall shear stress.


Author(s):  
D.V. Singh ◽  
R. Sinhasan ◽  
S.P. Tayal

Additives are extensively used in the commercial lubricants to improve their specific qualities. These lubricants are therefore non-Newtonian and their nonlinear relations between shear stress and shear strain rate are generally represented by cubic shear stress laws. The Navier-Stokes equations and the continuity equation in clindrical coordinates, representing the flow-field in the clearance space of each lobe of the three-lobe hydrodynamic journal bearings having Newtonian fluids, are solved by the finie element method using Galerkin’s technique. The solution for non-Newtonian lubricants is obtained by an iteration technique modifying the viscosity term in each iteration. The static performance characteristics have been obtained for both Newtonian and the non-Newtonian lubricants. The load capacity and friction of the bearing decrease with increase in the nonlinearity of the lubricant whereas the end flow is relatively unaffected.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Filipe S. Pereira ◽  
Luís Eça ◽  
Guilherme Vaz

The importance of the turbulence closure to the modeling accuracy of the partially-averaged Navier–Stokes equations (PANS) is investigated in prediction of the flow around a circular cylinder at Reynolds number of 3900. A series of PANS calculations at various degrees of physical resolution is conducted using three Reynolds-averaged Navier–Stokes equations (RANS)-based closures: the standard, shear-stress transport (SST), and turbulent/nonturbulent (TNT) k–ω models. The latter is proposed in this work. The results illustrate the dependence of PANS on the closure. At coarse physical resolutions, a narrower range of scales is resolved so that the influence of the closure on the simulations accuracy increases significantly. Among all closures, PANS–TNT achieves the lowest comparison errors. The reduced sensitivity of this closure to freestream turbulence quantities and the absence of auxiliary functions from its governing equations are certainly contributing to this result. It is demonstrated that the use of partial turbulence quantities in such auxiliary functions calibrated for total turbulent (RANS) quantities affects their behavior. On the other hand, the successive increase of physical resolution reduces the relevance of the closure, causing the convergence of the three models toward the same solution. This outcome is achieved once the physical resolution and closure guarantee the precise replication of the spatial development of the key coherent structures of the flow.


1985 ◽  
Vol 154 ◽  
pp. 357-375 ◽  
Author(s):  
J. A. C. Humphrey ◽  
H. Iacovides ◽  
B. E. Launder

The paper reports numerical solutions to a semi-elliptic truncation of the Navier–Stokes equations for the case of developing laminar flow in circular-sectioned bends over a range of Dean numbers. The ratios of bend radius to pipe radius are 7:1 and 20:1, corresponding with the configurations examined experimentally by Talbot and his co-workers in recent years. The semi-elliptic treatment facilitates a much finer grid than has been possible in earlier studies. Numerical accuracy has been further improved by assuming radial equilibrium over a thin sublayer immediately adjacent to the wall and by re-formulating the boundary conditions at the pipe centre.Streamwise velocity profiles at Dean numbers of 183 and 565 are in excellent agreement with laser-Doppler measurements by Agrawal, Talbot & Gong (1978). Good, albeit less complete, accord is found with the secondary velocities, though the differences that exist may be mainly due to the difficulty of making these measurements. The paper provides new information on the behaviour of the streamwise shear stress around the inner line of symmetry. Upstream of the point of minimum shear stress, our numerical predictions display a progressive shift towards the result of Stewartson, Cebici & Chang (1980) as the Dean number is successively raised. Downstream of the minimum, however, in contrast with the monotonic approach to an asymptotic level reported by Stewartson, the numerical solutions display a damped oscillatory behaviour reminiscent of those from Hawthorne's (1951) inviscid-flow calculations. The amplitude of the oscillation grows as the Dean number is raised.


Sign in / Sign up

Export Citation Format

Share Document