scholarly journals Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea

2022 ◽  
Vol 8 (1) ◽  
pp. 145-154
Author(s):  
Hye-Sook Jang ◽  
Jae-Hyoung An ◽  
Jun-Hyeok Song ◽  
Seung-Hwan Son ◽  
Yu-Sik Hong ◽  
...  

Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The purpose of this experimental study is to verify the out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is observed that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency. Doi: 10.28991/CEJ-2022-08-01-011 Full Text: PDF

2021 ◽  
Vol 7 (12) ◽  
pp. 2119-2129
Author(s):  
Seung-Hwan Son ◽  
Jae-Hyoung An ◽  
Jun-Hyeok Song ◽  
Yu-Sik Hong ◽  
Hye-Sook Jang ◽  
...  

Strengthening techniques have been employed in Korea to unreinforced masonry walls (UMWs) for several years to protect them from damage caused by the intermittent occurrence of earthquakes. Polyurea, which has a high tensile strength and elongation rate, can be utilized as a strengthening material to enhance the in-plane strength and ductility of UMWs. Glass fiber-reinforced polyurea (GFRPU) is a composite elastomer manufactured by progressively adding milled glass fiber to polyurea. The purpose of this study is to investigate the enhancement of the in-plane strength and ductility of UMWs using GFRPU, depending on the shape of the GFRPU coating on the wall. Four masonry wall specimens are tested with test variables of the number of strengthening sides and coating shapes. It is illustrated that the GFRPU reinforcement of masonry wall leads to enhanced load-carrying capacity, ductility, and energy absorption. An empirical formula to represent the degree of strengthening effected by GFRPU is proposed in this study. Doi: 10.28991/cej-2021-03091782 Full Text: PDF


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2021 ◽  
pp. 002199832110316
Author(s):  
Nahit Öztoprak

Joining dissimilar materials to achieve lightweight design and energy efficiency has been increasingly popular. A joint formed by components of particle-reinforced metal and polymer matrix composite combines the merits of both materials. This paper is mainly focused on the research of the tensile lap shear and impact behavior of the dissimilar single-lap joints (SLJs) between SiCp/AA2124 composite and glass fiber-reinforced polypropylene (PP). The effects of out-of-plane loading applied from different surfaces of SLJs on impact responses are evaluated. Hot pressing technique is introduced to manufacture metal/polymer assembly without using any adhesive. The hole drilling effect is investigated with the idea that it may provide weight reduction and also increase the strength of the dissimilar SLJs. The results indicate that the dissimilar SLJs show more Charpy impact strength when the impact is performed on the metal-matrix composite (MMC). Mechanical properties of SLJs are adversely affected by a drilled hole in the MMC adherend.


2013 ◽  
Vol 594-595 ◽  
pp. 629-633 ◽  
Author(s):  
Behzad Nematollahi ◽  
Jay Sanjayan ◽  
Jessie Xia Hui Chai ◽  
Tsui Ming Lu

This paper evaluates the effects of glass fiber addition on the properties of fresh and hardened fly ash based geopolymer concrete (GPC) activated by 8 M NaOH solution (28.6%) + Na2SiO3 (71.4%) with a SiO2/Na2O ratio of 2.0. Glass fibers at the dosages of 0.50%, 0.75%, 1.00% and 1.25% by volume of concrete were added to the GPC mix. The properties of fresh and hardened glass fiber reinforced fly ash based GPC in terms of workability, density, compressive and flexural strengths were compared with those of the fly ash based GPC without using glass fiber. The experimental results indicated that inclusion of the glass fibers resulted in decrease of the workability but increase of the density, compressive and flexural strengths of the fly ash based GPC with increased fiber content.


e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Dong-Jun Kwon ◽  
Joung-Man Park ◽  
Sang Hyuk Yum ◽  
Woo Il Lee

AbstractA lab scale structural reaction injection molding (S-RIM) piece of equipment was designed and used to fabricate glass fiber reinforced polydicyclopentadiene (p-DCPD) composites for three different fiber contents. In order to obtain information regarding the optimal process temperature (>80°C) and the curing time (<30 s), differential scanning calorimetry (DSC) was used to investigate the curing behavior of DCPD resin under isothermal conditions. Further, a norbornene-based silane treatment was used to improve the interfacial adhesion between the glass fibers and DCPD as confirmed by the micro-droplet pull-out test and scanning electron microscopy (SEM). Fabrication of glass fiber/p-DCPD composites with improved mechanical properties was carried out based on the optimized process conditions and surface treatment of glass fiber.


Author(s):  
A. Saravanapandi Solairajan ◽  
S. Alexraj ◽  
P. Vijaya Rajan ◽  
Godwin Jose

Glass fiber reinforced composite material was fabricated using E-glass fiber with unsaturated polyester resin. In Glass Fiber Reinforced Plastic (GFRP) composites, the matrix of polymer is reinforced with glass fibers. The surface quality and dimensional precision significantly affect the parts during their suitable life, particularly in cases where the components come in contact with other elements or materials. In the current study, GFRP is machined with two cases i.e. with and without Nano combinations in lathe. These machining studies were carried out on lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitrate (CBN) and Polycrystalline Diamond (PCD). The cutting parameters considered were cutting speed, feed, and depth of cut. Surface Finish is the most important parameter measured by main spindle and compares the value with another. A second order mathematical model in terms of cutting parameters was developed using RSM. The results specify the developed model is suitable for prediction of surface roughness in machining of GFRP composites.


2017 ◽  
Vol 747 ◽  
pp. 504-511
Author(s):  
Natalino Gattesco ◽  
Alessandra Gubana ◽  
Massimo Melotto

The use of a GFRP (Glass Fiber Reinforced Polymers) mesh, embedded as a reinforcement in a mortar coating on both wall sides, proved to be effective and reliable in increasing the masonry wall resistance and the plastic deformation capacity.In this study, a NL finite element model, developed to predict the in-plane behaviour of masonry walls strengthened by means of this technique, is refined and used in an extensive parametric study. Numerical results were compared with diagonal compression test data on URM and RM cobblestone masonry samples, showing good agreement. The masonry panel and the mortar coating were modelled as isotropic homogeneous materials with a smeared crack approach, whereas the GFRP reinforcement was modelled as a mesh of truss elements. Properties assigned to materials were derived from experimental tests.The parametric study performed before on some involved mechanical properties, considering a standard range of variation, is now extended to other parameters. Moreover, the combined variation of different properties is considered. The actual contribute of each component (masonry, GFRP mesh, mortar) on some macroscopic parameters (strength and ductility of the specimen) is evaluated.The parametric analysis highlights the important role of the GFRP mesh not only on the peak load increment but also on the post-peak behavior and, in particularly, on the ductility increment of the reinforced masonry panel. These results can address the optimization of the intervention technique and the deliverable of operative guidelines for practitioners.


Author(s):  
Ashkan Farazin ◽  
Afrasyab Khan

Fiber-reinforced polymer-based composites may experience various strain rates under different dynamic loads. As the mechanical behavior of these composites varies with strain rate, their response will be dependent on the strain rate. This paper presents a comprehensive review on glass fibers and composites reinforced with these fibers, as the most practical polymer-based composite, under dynamic loading. First, the properties of long glass fibers under different strain rates will be reviewed in detail. In the following, experimental studies on the effects of strain rate on various types of glass fiber-reinforced polymer-based composites will be categorized and presented. The behavior of thermoset polymers will be also addressed under different strain rates. Finally, various analytical and numerical macromechanical and micromechanical models will be comprehensively described for this type of composites.


Sign in / Sign up

Export Citation Format

Share Document