scholarly journals Numerical Simulation of the Stability of Rock Mass around Large Underground Cavern

2022 ◽  
Vol 8 (1) ◽  
pp. 81-91
Author(s):  
Dang Van Kien ◽  
Do Ngoc Anh ◽  
Do Ngoc Thai

Geotechnical problems are complicated to the extent and cannot be expected in other areas since non-uniformities of existing discontinuous, pores in materials and various properties of the components. At present, it is extremely difficult to develop a program for tunnel analysis that considers all complicated factors. However, tunnel analysis has made remarkable growth for the past several years due to the development of numerical analysis method and computer development, given the situation that it was difficult to solve formula of elasticity, viscoelasticity, and plasticity for the dynamic feature of the ground when the constituent laws, yielding conditions of ground materials, geometrical shape and boundary conditions of the structure were simulated in the past. The stability of rock mass around an underground large cavern is the key to the construction of large-scale underground projects. In this paper, the stability analysis was carried out based on those parameters by using 2D FEM RS2 program. The calculated stress and displacements of surrounding rock and rock support by FEM analysis were compared with those allowable values. The pattern of deformation, stress state, and the distribution of plastic areas are analyzed. Finally, the whole stability of surrounding rock mass of underground caverns was evaluated by Rock Science - RS2 software. The calculated axial forces were far below design capacity of rock bolts. The strong rock mass strength and high horizontal to vertical stress ratio enhanced safe working conditions throughout the excavation period. Thus wide span caverns and the system of caverns could be stability excavated sedimentary rock during the underground cavern and the system of caverns excavation by blasting method. The new method provides a reliable way to analyze the stability of the caverns and the system of caverns and also will help to design or optimize the subsequent support. Doi: 10.28991/CEJ-2022-08-01-06 Full Text: PDF

2010 ◽  
Vol 44-47 ◽  
pp. 1189-1192
Author(s):  
Zhong Chang Wang

The rose diagram of joint is generalized by grouping the attitude of disclosed discontinuous faces in detecting cavern and measuring point coordinate. The search of movable and key blocks of surrounding rock mass for underground powerhouse is implemented, the combinations of discontinuous faces and sliding faces, the location and the parameter of stability of movable and key blocks are obtained by used of the method of stereographic projection and vector analysis of the block theory. It is shown that the numbers of movable and key blocks in the location of downriver right side wall and vault are larger than those in other location owing to numerous discontinuous faces, and the faults of F34 and F33 play a main role in the stability of movable and key blocks. The guidance for excavation and reinforce of underground caverns is provided.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
XinPing Li ◽  
JunHong Huang ◽  
Yi Luo ◽  
Qian Dong ◽  
YouHua Li ◽  
...  

Aiming at surrounding rock damage induced by dynamic disturbance from blasting excavation of rock-anchored beam in rock mass at moderate or far distance in underground cavern, numerical model of different linear charging density and crustal stress in underground cavern is established by adopting dynamic finite element software based on borehole layout, charging, and rock parameter of the actual situation of a certain hydropower station. Through comparison in vibration velocity, contour surface of rock mass excavation, and the crushing extent of excavated rock mass between calculation result and field monitoring, optimum linear charging density of blast hole is determined. Studies are also conducted on rock mass vibration in moderate or far distance to blasting source, the damage of surrounding rock in near-field to blasting source, and crushing degree of excavated rock mass under various in situ stress conditions. Results indicate that, within certain range of in situ stress, the blasting vibration is independent of in situ stress, while when in situ stress is increasing above certain value, the blasting vibration velocity will be increasing and the damage of surrounding rock and the crushing degree of excavated rock mass will be decreasing.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Dai ◽  
Biao Li ◽  
Nuwen Xu ◽  
Yongguo Zhu ◽  
Peiwei Xiao

To study the stability of underground powerhouse at Houziyan hydropower station during excavation, a microseismic monitoring system is adopted. Based on the space-time distribution characteristics of microseismic events during excavation of the main powerhouse, the correlation between microseismic events and blasting construction is established; and the microseismic clustering areas of the underground powerhouse are identified and delineated. The FLAC3D code is used to simulate the deformation of main powerhouse. The simulated deformation characteristics are consistent with that recorded by microseismic monitoring. Finally, the correlation between the macroscopic deformation of surrounding rock mass and microseismic activities is also revealed. The results show that multiple faults between 1# and 3# bus tunnels are activated during excavation of floors V and VI of the main powerhouse. The comprehensive method combining microseismic monitoring with numerical simulation as well as routine monitoring can provide an effective way to evaluate the surrounding rock mass stability of underground caverns.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


2020 ◽  
Vol 165 ◽  
pp. 03024
Author(s):  
Ying Zhang ◽  
Heng Zhou ◽  
Shengjie Di ◽  
Xi Lu

In order to compare the influence of rock mass parameters weakening on the deformation and stability of excavation caverns in layered rock mass, based on power generation system caverns of a hydropower station, the stability and deformation of the caverns is analyzed. The results show that the mechanical characteristics of the structure surface play a major role in controlling the stability of caverns. And the displacement and yield zone value of plan 3, which adopt elastic-plastic softening model, are significantly larger than other two. The method which consider the residual strength of structure surface is more suitable for the excavation calculation of layered rock mass cavern.


1980 ◽  
Vol 1980 (300) ◽  
pp. 69-80
Author(s):  
Hiroya KOMADA ◽  
Kameichiro NAKAGAWA ◽  
Yoshihiro KITAHARA ◽  
Masao HAYASHI

Sign in / Sign up

Export Citation Format

Share Document