scholarly journals Anticipating Automated Vehicle Presence and the Effects on Interactions with Conventional Traffic and Infrastructure

10.29007/s6m7 ◽  
2019 ◽  
Author(s):  
Gerald Richter ◽  
Lukas Grohmann ◽  
Philippe Nitsche ◽  
Gernot Lenz

Expectations are that automated and connected mobility will increase road safety and traffic efficiency. However, due to possible shortcomings of new technologies , road users may be confronted with disturbances and potential safety risks. The mitigation of such risks will bring necessary changes to road infrastructure, vehicles and road-users’ behavior. In a traffic environment that was built to fit the human perception, preemptive simulation of parametrized scenarios can provide guidelines for what changes and difficulties are to be expected. Utilizing SUMO in varied scenarios, this paper outlines the creation of virtual models that correspond to interaction hot spots on the Austrian road network - from digitizing the infrastructure, to calibrating a simulation scenario with congruent traffic measurements - while it concludes with the evaluation of scenario simulation results. The approach is demonstrated for a selected motorway ramp scenario, varying rates of automated vehicles and different infrastructure layouts. Performance indicators like vehicle speed distributions and traffic disruptions are defined and analyzed to investigate how adaptations can mitigate risks, influence traffic flow and hence support progressing vehicle automation.

Author(s):  
Mostafa Namian ◽  
Mohammad Khalid ◽  
George Wang ◽  
Yelda Turkan

Unmanned aerial vehicles (UAVs) have gained their prevalent recognition in construction because of their exceptional advantages. Despite the increasing use of UAVs in the industry and their remarkable benefits, there are serious potential safety risks associated that have been overlooked. Construction is one of the most hazardous industries in the United States. In addition to the ordinary hazards normally present in dynamic construction workplaces, UAVs can expose workers to a wider range of never-before-seen safety risks that must be recognized and controlled. The industry is not equipped with safety measures to prevent potential accidents, because of scarce research on drone-associated hazards and risks. The aim of this research was to (1) identify the UAV-associated hazards in construction that may expose personnel and property to potential harms, and (2) study the relative impact of each hazard and the associated safety risks. In Phase I, the researchers conducted an extensive literature review and consulted with a construction UAV expert. In Phase II, the researchers obtained data from 54 construction experts validating and evaluating the identified hazards and risks. The results revealed that adopting UAVs can expose construction projects to a variety of hazards that the industry is not familiar with. “Collision with properties,”“collision with humans,” and “distraction” were identified as the top three safety risks. Moreover, the study introduces effective strategies, such as having qualified crew members, proper drone model selection, and drone maintenance, to mitigate the safety risks. Finally, a post-hoc case study was investigated and presented in this article.


2021 ◽  
Vol 13 (15) ◽  
pp. 8396
Author(s):  
Marc Wilbrink ◽  
Merle Lau ◽  
Johannes Illgner ◽  
Anna Schieben ◽  
Michael Oehl

The development of automated vehicles (AVs) and their integration into traffic are seen by many vehicle manufacturers and stakeholders such as cities or transportation companies as a revolution in mobility. In future urban traffic, it is more likely that AVs will operate not in separated traffic spaces but in so-called mixed traffic environments where different types of traffic participants interact. Therefore, AVs must be able to communicate with other traffic participants, e.g., pedestrians as vulnerable road users (VRUs), to solve ambiguous traffic situations. To achieve well-working communication and thereby safe interaction between AVs and other traffic participants, the latest research discusses external human–machine interfaces (eHMIs) as promising communication tools. Therefore, this study examines the potential positive and negative effects of AVs equipped with static (only displaying the current vehicle automation status (VAS)) and dynamic (communicating an AV’s perception and intention) eHMIs on the interaction with pedestrians by taking subjective and objective measurements into account. In a Virtual Reality (VR) simulator study, 62 participants were instructed to cross a street while interacting with non-automated (without eHMI) and automated vehicles (equipped with static eHMI or dynamic eHMI). The results reveal that a static eHMI had no effect on pedestrians’ crossing decisions and behaviors compared to a non-automated vehicle without any eHMI. However, participants benefit from the additional information of a dynamic eHMI by making earlier decisions to cross the street and higher certainties regarding their decisions when interacting with an AV with a dynamic eHMI compared to an AV with a static eHMI or a non-automated vehicle. Implications for a holistic evaluation of eHMIs as AV communication tools and their safe introduction into traffic are discussed based on the results.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012703
Author(s):  
Kiran Teresa Thakur ◽  
Samantha Epstein ◽  
Amanda Bilski ◽  
Alanna Balbi ◽  
Amelia K Boehme ◽  
...  

The spread of the SARS-CoV-2 virus has triggered a global effort to rapidly develop and deploy effective and safe COVID-19 vaccination(s). Vaccination has been one of the most effective medical interventions in human history, though potential safety risks of novel vaccines must be monitored, identified, and quantified. Adverse events must be carefully assessed to define whether they are causally associated with vaccination or coincidence. Neurological adverse events following immunizations are overall rare but with significant morbidity and mortality when they occur. Here, we review neurological conditions seen in the context of prior vaccinations and the current data to date on select COVID-19 vaccines including mRNA vaccine(s) and the adenovirus-vector COVID-19 vaccines, ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2.S Johnson and Johnson (Janssen/J&J).


Author(s):  
Joshua Domeyer ◽  
Azadeh Dinparastdjadid ◽  
John D. Lee ◽  
Grace Douglas ◽  
Areen Alsaid ◽  
...  

Since the introduction of automobiles in the early 1900s, communication among elements of the transportation system has been critical for efficiency, safety, and fairness. Communication mechanisms such as signs, lights, and roadway markings were developed to send signals about affordances (i.e., where and when can I go?) and constraints (i.e., where and when can I not go?). In addition, signals among road users such as the hand wave have emerged to communicate similar information. With the introduction of highly automated vehicles, it may be necessary to understand communication signals and apply them to vehicle automation design. However, the question remains: how do we identify the most important interactions that need to be considered for vehicle automation? We propose a method by which we examine the timing of existing vehicle–pedestrian interactions to make conclusions about how the use of time and space can be used as a communication tool. Videos were recorded at representative intersections and crossings in a mid-sized, Midwestern U.S. town. The intersections were chosen based on their potential to elicit interactions with pedestrians and their ubiquity (e.g., four-way stop). Videos were then coded to describe the interactions between vehicles and pedestrians. A focus of this coding was the short stop—stopping before a crosswalk to communicate yielding intent to a pedestrian—which was defined as the time from when the vehicle began to accelerate, after slowing down, to when it reached the crosswalk. Results revealed evidence that vehicle kinematic and spatial cues signal the driver’s intent to other road users.


2015 ◽  
Vol 75 (10) ◽  
Author(s):  
Amirul Afif Jasmi ◽  
Mohamad Hafis Izran Ishak ◽  
Nurul Hawani Idris

Over recent years, there has been a growth of interest in the use of social media including Facebook and Twitter by the authorities to share and updates current information to the general public. The technology has been used for a variety of purposes including traffic control and transportation planning. There is a concern that the use of new technologies, including social media will lead to data abundance that requires effective operational resources to interpret the big data. This paper proposes a tweet data extractor to extract the traffic tweet by the authority and visualise the reports and mash up on top of online map, namely Twitter map. Visualisation of traffic tweet on a map could assist a user to effectively interpret the text based Twitter report by a location based map viewer. Hence, it could ease the process of planning itinerary by the road users. 


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongtao Liu ◽  
Jie Qiao ◽  
Yanting Hu ◽  
Tengyuan Fang ◽  
Ting Xu ◽  
...  

Different vehicular speed limits may have an impact on the balance between safety and efficiency of travel on mountainous road corners associated with complex road conditions. Placing suitable speed limit warning signs does not merely effectively improve traffic safety but can also improve traffic efficiency. In this study, a global positioning system (GPS) terminal and Metrocount were used to collect vehicle speed data from more than 40 provincial-level curves in 8 provinces over the course of 1 year. Each road data collection time-period lasted approximately 8 hours. A descriptive statistics method was adopted by means of data screening and pretreatment. Additionally, both a velocity difference estimation model was established and a linear model of velocity differential estimation was constructed. Quantitative analysis was carried out on the safe speed, the driver’s expected speed, and the location of the speed limit warning signs. This demonstrated a positive correlation with the initial speed. When the difference in speed was greater than 15 km/h, a safety warning sign was required to limit the design speed to 80 km/h. A safety warning sign was also required when the corner radius was less than 300 m. The location of safety warning signs could be calculated based on the operating speed and taking driving safety and the visual range of drivers into consideration. The results can provide a theoretical reference for setting up appropriate safe speed limiting signs on road corners in mountainous areas.


Author(s):  
Simon Fernandez ◽  
Laura Militello ◽  
Christen Sushereba ◽  
David Bahner ◽  
Michael Barrie ◽  
...  

We propose a toolkit for objectively evaluating the effectiveness of new technologies for improving human cognitive performance. In complex socio-technical systems such as nuclear power generation and air traffic management, garden path scenarios have been effectively used to anchor initial inaccurate hypotheses that are then monitored for movement towards the correct hypotheses as increasing evidence over time makes it easier to change the diagnosis. The time to come to an accurate diagnosis in a well-crafted simulation scenario with an initial inaccurate anchor hypothesis is an objective, repeatable measure of performance for the macrocognition function of sensemaking. The time to verbalize the recognition of critical cues, which becomes increasingly less subtle over time, as well as the time to move from the inaccurate diagnosis at one of the correct diagnoses in the complete diagnostic set can all be reliably measured and compared in an across-subject study design. Modifications with conceptually matched scenarios using within-subject designs can also be employed if asymmetric learning effects are managed.


Author(s):  
Hsueh-wen Chow ◽  
Dai-Rong Wu

Outdoor fitness equipment (OFE) areas have become a popular form of built environment infrastructure in public open spaces as a means to improve public health through increased physical activity. However, the benefits of using OFE are not consistent, and several OFE accidents have been reported. In this study, we videotaped how OFE users operate OFE in parks and selected four types of popular OFE (the waist twister, air walker, ski machine, and waist/back massager) for video content analysis. Furthermore, we established coding schemes and compared results with the instructions provided by OFE manufacturers. The results revealed various usage behaviors for the same OFE types. In addition, we observed that a significant portion of user behaviors did not follow manufacturers’ instructions, which might pose potential risks or actually cause injuries. Children are especially prone to act improperly. This study provides empirical evidence indicating the existence of potential safety risks due to inappropriate usage behaviors that might lead to accidents and injuries while using OFE. This study provides crucial information that can be used to evaluate the effectiveness of OFE and to develop future park or open space initiatives.


2018 ◽  
Vol 30 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Noboru Noguchi ◽  

With the intensive application of techniques in global positioning, machine vision, image processing, sensor integration, and computing-based algorithms, vehicle automation is one of the most pragmatic branches of precision agriculture, and has evolved from a concept to be in existence worldwide. This paper addresses the application of robot vehicles in agriculture using new technologies.


Sign in / Sign up

Export Citation Format

Share Document