APPLICATION OF TWO-DIMENSIONAL SPLINES IN MODELING PROBLEMS OF FUNCTIONAL MATERIALS

2021 ◽  
pp. 7-9
Author(s):  
K. Domichev ◽  
A. Petrov ◽  
P. Steblyanko
Author(s):  
Adam Brill ◽  
Elad Koren ◽  
Graham de Ruiter

Atomically thin two-dimensional materials (2DMs) have moved in the past 15 years from a serendipitously isolated single-layered graphene curiosity to a near technological renaissance, where 2DMs such as graphene and...


2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19707-19711 ◽  
Author(s):  
Min-A Kang ◽  
Seongjun Kim ◽  
In-Su Jeon ◽  
Yi Rang Lim ◽  
Chong-Yun Park ◽  
...  

Two-dimensional transition metal dichalcogenides (TMDs) such as molybdenum disulfide, have recently attracted attention for their applicability as building blocks for fabricating advanced functional materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 579 ◽  
Author(s):  
Antonio Di Bartolomeo

Two-dimensional (2D) materials and their van der Waals heterojunctions offer the opportunity to combine layers with different properties as the building blocks to engineer new functional materials for high-performance devices, sensors, and water-splitting photocatalysts. A tremendous amount of work has been done thus far to isolate or synthesize new 2D materials as well as to form new heterostructures and investigate their chemical and physical properties. This article collection covers state-of-the-art experimental, numerical, and theoretical research on 2D materials and on their van der Waals heterojunctions for applications in electronics, optoelectronics, and energy generation.


2017 ◽  
Vol 5 (47) ◽  
pp. 12289-12297 ◽  
Author(s):  
Wei Hu ◽  
Jinlong Yang

Two-dimensional (2D) van der Waals heterojunctions combining the electronic structures of such 2D materials have been predicted theoretically and synthesized experimentally to expect more new properties and potential applications far beyond corresponding 2D materials.


2019 ◽  
Vol 6 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Masayuki Hagiwara ◽  
Takanori Kida ◽  
Kazuyuki Matsuda ◽  
Haruka Kyakuno ◽  
Yutaka Maniwa ◽  
...  

Background: In this paper, we report on the topics of one-dimensional (1D) and two-dimensional (2D) functional materials. Single-Walled Carbon Nanotubes (SWCNTs) are seamless hollow cylinders made of hexagonal lattice graphite sheets. The SWCNTs have attracted considerable attention due to the applicability of their enclosed nanospaces to engineering, and many types of guest materials are encapsulated inside their 1D space, expecting unusual properties. The poly Transition Metal (TM) phthalocyanine, in which phthalocyanine units are extended in two dimensions by sharing benzene rings, is one of the examples of the TM containing 2D carbon materials. Because of strong correlation between localized d-electrons in the TM atom and delocalized π-electrons on the poly phthalocyanine frame, it is expected that spin-polarized conduction, which is useful for the spintronic applications. Objectives: The objective of the first work is to synthesize SWCNTs encapsulating oxygen molecules having spin one, whose O-O bond directions are aligned to the longitudinal direction of the SWCNTs. The objective of the second work is to synthesize Poly Cu Phthalocyanine (PCuPc) through a bottom-up method by using copper octacyanophthalocyanine as a building block and to elucidate its crystal structure and magnetic properties. Methods: SWCNTs with inner diameter of ca 0.8 nm were prepared by the CoMoCAT method, and encapsulated together with oxygen molecules (~400 Torr) into a high-purity quartz tube. To subtract the background signals of the SWCNTs and the quartz tube, we prepared the same SWCNTs inducing He gas after evacuating oxygen molecules. Magnetization measurements of these SWCNTs samples were conducted by means of a SQUID magnetometer and a pulse magnet using an induction method. PCuPc were synthesized by a solid state reaction of octacyanophthalocyanine, tetracyanobenzene, and CuCl2·2H2O in glass ampoules sealed after evacuation. The as-synthesized samples were characterized using XRD analysis and TEM microscopy. Magnetization measurement of the samples were done by using a SQUID magnetometer. Results: The intrinsic magnetization data from oxygen molecules inside the SWCNTs (temperature and magnetic field dependence) show magnetic properties typical of the spin-one Heisenberg antiferromagnet named a Haldane magnet. PCuPc and its half-filling counterpart were obtained by solid state reaction. Both magnetic susceptibility and magnetization of PCuPc are larger than those of half-filling PCuPc, but the magnitudes of the former sample are about 1.5 times larger than those of the latter one, which is expected to be twice from the geometric superlattice structure. Conclusion: We have studied magnetic properties (magnetic susceptibility and magnetization) of oxygen molecules encapsulated into Single Walled Carbon Nanotubes (SWCNTs) with diameters of about 0.8 nm, regarded as a 1D functional magnetic material, and Poly Copper Phthalocyanine (PCuPc) and poly half-filling copper phthalocyanine (half-filling PCuPc), regarded as 2D functional magnetic materials.


Sign in / Sign up

Export Citation Format

Share Document