scholarly journals Fluid Inclusions and Rare Earth Elements (REE) analysis in calcite veins: Tectonic - diagenesis interaction in the Rosablanca formation, Mesa de los Santos sector, eastern cordillera, Colombia

2018 ◽  
Vol 8 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Jairo Conde-Gómez

Studies conducted by means of petrography, cathodoluminescence, SEM, fluid inclusion and REE geochemistry in core samples from the Rosablanca Formation in the Mesa de Los  Santos sector, identified two types of material: the host rock classified as Packstones and Grainstones, and veins that texturally expose three types of filling (blocky texture, blocky elongate texture, fibrous texture). Diagenesis is characterized by dissolution, carbonate cement precipitation, compaction, fracturing and fluid circulation through fractures during at least three episodes; these diagenetic processes were contemporaneous with the distensive and compressive tectonic regimes regionally dominant during the Cretaceous, Paleogene and Neogene in the study area. The fluids that generated the different types of texture inside the veins were brines that belonged to the H2O – NaCl – CaCl2 system, with salinities between 0.03 – 12.96 % wt eq NaCl, derived from the Rosablanca Formation that was deposited under oxic conditions, retaining their marine character and implying an autochthonousorigin for the REE present in the veins. The conditions of entrapment for fluid inclusions during the early event were heterogeneous, arising from an immiscible mixture of brines andhydrocarbons, while in the second, they were homogeneous with later post-entrapment processes.later post-entrapment processes.

1990 ◽  
Vol 54 (375) ◽  
pp. 245-255 ◽  
Author(s):  
C. J. S. de Alvarenga ◽  
M. Cathelineau ◽  
J. Dubessy

AbstractThe upper Proterozoic Cuiabá group of Mato Grosso, Brazil, is composed of low-grade clastic meta-sediments which have been folded by several successive tectonic events. Three generations of quartz veins are associated with the structural evolution of this area. The first veins are deformed by the main tectonic phases and show a complex deformational patterns. The second set is parallel to the cleavage and was formed syntectonically during the main folding phase, whilst the last quartz veins are related to a later stage of deformation. A systematic study of fluid inclusions in relation with a statistical study of microstructural markers (fluid inclusion trails, opened microcracks) was carried out on quartz veins from three localities. On the basis of microthermometric studies and Raman spectrometry analysis, four differents types of fluids have been distinguished, each trapped in specific fluid inclusion trails: (i) CO2-rich liquids and vapours (Lc, Vc) at Casa de Pedra, (ii) Lc and Vc inclusions with variable amounts of CO2, CH4, N2 in the vapour phase at BR-70, (iii) CH2-N2-rich vapours (Vn-m), and (iv) aqueous inclusions (L) with variable salinities representing the last fluid generations at all localities.At Casa de Pedra and BR-70, most fluids are observed within the three generations of quartz veins, indicating an important fluid circulation associated with the last phase of brittle deformation. Fluid inclusions of type (iii) and (iv) are oriented along several well defined directions. The study shows the importance of integrated microstructural and fluid-inclusion studies for understanding the geometry and chronology of fluid circulation.


2021 ◽  
Author(s):  
Jeroen van der Lubbe ◽  
Cas Nooitgedacht ◽  
Philip Staudigel ◽  
Martin Ziegler

<p>Biogenic and inorganic carbonates are widely used to reconstruct past temperatures and fluid compositions. For decades, calcification temperatures have been inferred from oxygen isotope composition (δ<sup>18</sup>O) of calcium carbonates (CaCO­<sub>3</sub>) assuming the δ<sup>18</sup>O of the parental fluid and isotopic equilibrium precipitation conditions. The development of the clumped isotope (Δ<sub>47</sub>) thermometer allows for reconstructing equilibrium calcification temperatures without requiring a priori knowledge of the water δ<sup>18</sup>O values.</p><p>Carbonate minerals can also contain several weight percentages of water, which are typically trapped within microscopic pores. These fluid-inclusions may preserve remnants of the parental fluid, which can be analyzed for the δ<sup>18</sup>O as well as hydrogen isotopic (δ<sup>2</sup>H) composition. Subsequently, the δ<sup>18</sup>O of fluid-inclusion and host carbonate may allow for the determination of paleotemperatures by providing constraint on the δ<sup>18</sup>O water value.</p><p>Reasonable equilibrium temperatures can be obtained for speleothem calcites from cave systems. On the contrary, anomalously high temperatures are derived from δ<sup>18</sup>O fluid-inclusion and calcite pairs in soil carbonates possibly suggesting diffusion of trapped water from host CaCO<sub>3</sub>. Deeply-buried and subsequently exhumed (inorganic) calcite veins have yielded discrepant paleotemperature estimates between fluid-inclusion and Δ<sub>47</sub> thermometers. The distinctly lower fluid-inclusion derived temperatures might be attributed to kinetic fraction during initial vein cementation and/or isotopic re-equilibration between fluid-inclusions and CaCO<sub>3</sub> at lower temperatures during uplift.</p><p>Heating experiments demonstrate that the oxygen isotope exchange between fluid inclusions and host carbonate is limited for inorganic calcite and aragonite at high temperatures (175<sup>o</sup>C) for short timescales (90 minutes). In contrast, considerable positive shifts in the δ<sup>18</sup>O of fluid inclusions have been recorded in biogenic aragonites during experimental heating, which coincide with lower carbonate δ<sup>18</sup>O values (albeit to a lesser extent due to the overwhelming amount of oxygen in the CaCO<sub>3</sub>), indicative of re-equilibration between host carbonate and pore fluids. This effect leads to apparently high equilibrium temperatures. In conjunction, the Δ<sub>47</sub> derived temperatures do not change significantly after heating of inorganic aragonite, whereas a considerable higher Δ<sub>47</sub> temperature is derived from aragonitic bivalve samples after heating. The positive shift in both thermometers has interpreted to reflect re-crystallization of CaCO<sub>3</sub> and isotopic re-equilibration between the host carbonate and fluid-inclusions. This exchange might be facilitated by extremely small fluid-inclusions present in biogenic carbonates and/or water associated with organic substances.</p><p>Importantly, these isotopic exchange processes in biogenic aragonites took place in the absence of an external fluid and below the temperature thresholds for solid-state-reordering and the aragonite-to-calcite transition. The novel application of combined fluid-inclusion and clumped isotope thermometry has a proven utility in determining equilibrium precipitation temperatures, monitoring preservation of the primary fluid-inclusions and re-crystallization processes during diagenesis. However, additional experiments and analytical improvements are needed to further constrain the diagenetic behavior of this proxy.</p><p> </p>


1988 ◽  
Vol 25 (11) ◽  
pp. 1884-1894 ◽  
Author(s):  
Frederick M. Haynes

Fluid inclusions from three quartz–galena–sphalerite–barite–calcite veins in the Thunder Bay district of western Ontario contain liquid + vapor ± halite and homogenize by vapor disappearance or halite dissolution at temperatures of 90–200 °C. Cyclically frozen, liquid + vapor (type I) inclusions undergo four melting events upon gradual warming (initial melting at −55 to −46 °C; ice disappearance at −30.2 to −25.4 °C; inversion of hydrohalite to halite at −8.0 to 0.7 °C; and halite melting at 14.0 to 56.3 °C. Liquid + vapor + halite (type II) inclusions behave similarly but have higher Tm ice (−27.2 to −21.7 °C) and Tm halite (105–203 °C). Scanning electron microscopy and energy dispersive analysis of fluid-inclusion-derived decrepitates indicate that the solutes consist of NaCl > CaCl2 [Formula: see text] KCl and are consistent with the low-temperature phase observations in that they define two distinct populations based on CaCl2/(CaCl2 + NaCl) ratios.The temperatures and compositional trends defined by the inclusion results are similar to those documented for basinal brines and from fluid inclusions in Mississippi Valley type ore deposits. The Thunder Bay veins cross the basal unconformity of the Middle Proterozoic Sibley basin and extend into Archean basement granites, such that the fluid inclusions results provide direct evidence that basinal waters infiltrated basement rock in western Ontario. The inclusion fluids and associated mineralization are thought to result either from dewatering of the Sibley basin during Keweenaw age rifting or from the introduction of exotic Paleozoic basinal waters when the Michigan basin extended over the region.


2022 ◽  
pp. 105194
Author(s):  
L. Hernandez-Terrones ◽  
L. Martínez ◽  
J. Szamotulski ◽  
E. González-Partida ◽  
J.V. Morgan ◽  
...  

2006 ◽  
Vol 70 (2) ◽  
pp. 141-158 ◽  
Author(s):  
Ye. Vapnik ◽  
I. Moroz ◽  
M. Roth ◽  
I. Eliezri

AbstractKianjavato emerald (Mananjary deposits, East coast of Madagascar) was formed during metasomatic processes at the contact between pegmatites and hornblendites. The metasomatic exchange was related to a Pan-African tectonometamorphic event.Fluid inclusions in the Kianjavato emerald and quartz were studied by means of microthermometry and Raman probe analysis. Three main types of inclusions were revealed: CO2-rich, CH4-rich and aqueous-rich, with a salinity of ∼2 wt.% NaCl equiv. The inclusions occurred along the same primary and pseudosecondary trails and were considered to be formed simultaneously. Based on fluid-inclusion data, the conditions of emerald growth were 250°C < T < 450°C and P = 1.5 kbar.The fluid inclusion data for Kianjavato emerald were compared to the data for another Madagascar emerald, Ianapera. The latter is of similar age, but its genesis was determined by a shearing event. Our fluid inclusion data suggested that shearing was also important as a mechanism of introducing CO2-rich fluid for the genesis of the Kianjavato emerald.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-25
Author(s):  
Lu Zhang ◽  
Shao-Yong Jiang ◽  
Suo-Fei Xiong ◽  
Deng-Fei Duan

The Fuzishan Cu-Mo deposit is located in the Edong district of the Middle-Lower Yangtze River Metallogenic Belt, China. The orebodies mainly occurred as lenticular and bedded shapes in the skarn zone between the Lower Permian Qixia Formation carbonate rocks and the quartz diorite. Four paragenetic stages have been recognized based on petrographic observations: (1) prograde skarn stage, (2) retrograde skarn stage, (3) quartz-sulfide stage, and (4) carbonate stage. Six fluid inclusion types were recognized: S1(vapor + liquid + halite ± other daughter minerals), S2(vapor + liquid + daughter minerals except halite), LV(rich liquid + vapor), VL(rich vapor + liquid), V (vapor), and L (liquid) types. Fluid inclusion studies show distinct variations in composition, final homogenization temperature, and salinity in four stages. Daughter minerals of the primary fluid inclusions include chalcopyrite, molybdenite, hematite, anhydrite, calcite, and halite in the prograde skarn stage and hematite, calcite, and sulfide (?) in the retrograde skarn stage. No daughter minerals occurred in the quartz-sulfide and carbonate stages. Final homogenization temperatures recorded in these stages are from 405 to >550°C, from 212 to 498°C, from 150 to 485°C, and from 89 to 223°C, respectively, while salinities are from 3.7 to 42.5, from 2.6 to 18.5, from 2.2 to 17.9, and from 0.2 to 11.5 wt.% NaCl equivalent, respectively. The coexisting VLand S1type fluid inclusions show similar homogenization temperature of 550 to about 650°C in the prograde skarn stage, indicating that immiscibility occurred at lithostatic pressure of 700 bars to perhaps 1000 bars, corresponding to a depth of 2.6 km to about 3.7 km. The coeval VLand LVtypes fluid inclusions with homogenization temperature of 350 to 400°C in the late retrograde skarn and quartz-sulfide stages suggest that boiling occurred under hydrostatic pressure of 150 to 280 bars, equivalent to a depth of 1.5 to 2.8 km. Mo mineralization in the retrograde stage predated Cu mineralization which mainly occurred in the quartz-sulfide stage. Fluid compositions indicate that ore-forming fluid has highfO2and rich Cu and Mo concentration in the early stage, while relatively lowerfO2and poor Cu and Mo concentration in the middle to late stages. Microthermometric data show a decreasing trend in temperature and salinity in the fluid evolution process. Decreasing temperature and boiling event may be the main factors that control the ore precipitation.


2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


Author(s):  
Ao Su ◽  
Honghan Chen ◽  
Yue-xing Feng ◽  
Jian-xin Zhao

To date, few isotope age constraints on primary oil migration have been reported. Here we present U-Pb dating and characterization of two fracture-filling, oil inclusion-bearing calcite veins hosted in the Paleocene siliciclastic mudstone source rocks in Subei Basin, China. Deposition age of the mudstone formation was estimated to be ca. 60.2−58.0 Ma. The first vein consists of two major phases: a microcrystalline-granular (MG) calcite phase, and a blocky calcite phase, each showing distinctive petrographic features, rare earth element patterns, and carbon and oxygen isotope compositions. The early MG phase resulted from local mobilization of host carbonates, likely associated with disequilibrium compaction over-pressuring or tectonic extension, whereas the late-filling blocky calcite phase was derived from overpressured oil-bearing fluids with enhanced fluid-rock interactions. Vein texture and fluorescence characteristics reveal at least two oil expulsion events, the former represented by multiple bitumen veinlets postdating the MG calcite generation, and the latter marked by blue-fluorescing primary oil inclusions synchronous with the blocky calcite cementation. The MG calcite yields a laser ablation−inductively coupled plasma−mass spectrometry U-Pb age of 55.6 ± 1.4 Ma, constraining the earliest timing of the early oil migration event. The blocky calcite gives a younger U-Pb age of 47.8 ± 2.3 Ma, analytically indistinguishable from the U-Pb age of 46.5 ± 1.7 Ma yielded by the second calcite vein. These two ages define the time of the late oil migration event, agreeing well with the age estimate of 49.7−45.2 Ma inferred from fluid-inclusion homogenization temperature and published burial models. Thermodynamic modeling shows that the oil inclusions were trapped at ∼27.0−40.9 MPa, exceeding corresponding hydrostatic pressures (23.1−26.7 MPa), confirming mild-moderate overpressure created by oil generation-expulsion. This integrated study combining carbonate U-Pb dating and fluid-inclusion characterization provides a new approach for reconstructing pressure-temperature-composition-time points in petroleum systems.


2014 ◽  
Vol 88 (s2) ◽  
pp. 1118-1119 ◽  
Author(s):  
Peirong LI ◽  
Baocheng PANG ◽  
Baohua WANG ◽  
Yuanqiang LI ◽  
Yequan ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document