scholarly journals Comportamiento de microorganismos patogenos en salsa de xoconostle (Opuntia oligacantha f. C. Först)

2015 ◽  
Vol 1 (2) ◽  
Author(s):  
L.R. Rodarte-Medina ◽  
A.D. Hernández-Fuentes ◽  
J. Castro-Rosas ◽  
C.A. Gómez-Aldapa

Se investigó el comportamiento de Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus y Salmonella Typhimurium, en salsa con y sin Xoconostle (Opuntia oligacantha F. C. Först). Los frutos se recolectaron directamente de un huerto de Xoconostle y se trasportaron al laboratorio a temperatura ambiente. En el laboratorio se prepararon 3 tipos de salsa con tres formulaciones teniendo como base principal: chile-Xoconostle (A), Chile-Xoconostle-Jitomate (B) y Chile-Jitomate (C). Por separado, las bacterias patógenas fueron inoculadas en las salsas y éstas se almacenaron a 3-5° y 30° C. El recuento de los microorganismos patógenos se realizó mediante la técnica de vertido en placa. Además, se evaluó el efecto antimicrobiano de las salsas de Xoconostle, del fruto de Xoconostle y del chile mediante la técnica de difusión en agar. Tanto E. coli O157:H7 como S. aureus se multiplicaron en la salsa. L. monocytogenes y S. Typhimurium no mostraron desarrollo. En todos los casos la salsa tipo A presento mayor efecto inhibitorio en el desarrollo de E. coli y S. aureus, o en la sobrevivencia de L. monocytogenes y S. Typhimurium. Mediante la técnica de difusión en placa se observó que tanto el Xoconostle como las salsas a base de Xoconostle mostraron efecto antimicrobiano. El chile no mostró efecto antimicrobiano.

2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2010 ◽  
Vol 73 (7) ◽  
pp. 1247-1256 ◽  
Author(s):  
STACEY COLLIGNON ◽  
LISE KORSTEN

The ability of the foodborne pathogens Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus to attach, colonize, and survive on stone fruit surfaces was investigated. Fifty microliters of bacterial suspension was spot inoculated onto the sterile intact fructoplane of whole peaches and plums. Minimum time required for initial adhesion and attachment was recorded for different surface contact times. Surface colonization patterns of the four pathogens and survival under simulated commercial export conditions also were evaluated. L. monocytogenes and Salmonella Typhimurium attached immediately to stone fruit surfaces. E. coli O157:H7 and S. aureus were visibly attached after 30 s and 1 h, respectively, of direct exposure. Holding freshly harvested stone fruit at 0.5°C to simulate cold storage conditions significantly lowered the titer of E. coli O157:H7 on plums and the titers of L. monocytogenes and Salmonella Typhimurium on stone fruit. E. coli O157:H7 and L. monocytogenes at a low inoculum level and S. aureus and Salmonella Typhimurium at high and low levels did not survive the simulated export chain conditions at titers that exceeded the minimum infectious dose. However, E. coli O157:H7 and L. monocytogenes were able to survive on stone fruit surfaces when inoculated at an artificially high level. In this case, the final titer at the end of the supply chain was higher than the infectious dose. In this laboratory experiment, E. coli O157:H7, L. monocytogenes, Salmonella Typhimurium, and S. aureus at potential natural contamination levels were unable to survive simulated export conditions.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


2004 ◽  
Vol 67 (7) ◽  
pp. 1497-1500 ◽  
Author(s):  
Y. INATSU ◽  
M. L. BARI ◽  
S. KAWASAKI ◽  
K. ISSHIKI

The survival of gram-positive and gram-negative foodborne pathogens in both commercial and laboratory-prepared kimchi (a traditional fermented food widely consumed in Japan) was investigated. It was found that Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes could survive in both commercial and laboratory-prepared kimchi inoculated with these pathogens and incubated at 10°C for 7 days. However, when incubation was prolonged, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, whereas Salmonella Enteritidis and L. monocytogenes took 16 days to reach similar levels in commercial kimchi. On the other hand, E. coli O157:H7 remained at high levels throughout the incubation period. For laboratory-prepared kimchi, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, and L. monocytogenes took 20 days to reach a similar level. E. coli O157:H7 and Salmonella Enteritidis remained at high levels throughout the incubation period. The results of this study suggest that the contamination of kimchi with E. coli O157:H7, Salmonella Enteritidis, S. aureus, or L. monocytogenes at any stage of production or marketing could pose a potential risk.


Author(s):  
Zeliha Yıldırım ◽  
Yaselin İlk ◽  
Metin Yıldırım

In this study, the effects of food preservative p-hydroxybenzoic acid and propyl-paraben on the inhibitory activity of enterocin KP produced by Enterococcus faecalis KP were determined. Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium, resistant to enterocin KP bacteriocin, were used as target organisms. The inhibitor activity of enterosin KP (1600 AU/ml) alone or in combination with p-hydroxybenzoic acid (%0.1-0.3) and propyl-paraben (%0.008-0.16) on the growth of Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella Typhimurium were determined. The inhibitory activity of enterocin KP was increased when used in combination with p-hydroxybenzoic acid and propyl-paraben at concentrations of 0.1-0.3% and 0.008-0.016%, respectively. Furthermore, Staphylococcus aureus, E. coli O157:H7 and Salmonella Typhimurium became sensitive to enterocin KP. In conclusion, the use of enterocin KP in combination with other food preservatives principles resulted in an increase in its inhibitory activity and spectrum.


2006 ◽  
Vol 69 (3) ◽  
pp. 582-590 ◽  
Author(s):  
PASCALE M. PIERRE ◽  
ELLIOT T. RYSER

Alfalfa seeds were inoculated with a three-strain cocktail of Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium DT104, or Listeria monocytogenes by immersion to contain ∼6 to 8 log CFU/g and then treated with a fatty acid–based sanitizer containing 250 ppm of peroxyacid, 1,000 ppm of caprylic and capric acids (Emery 658), 1,000 ppm of lactic acid, and 500 ppm of glycerol monolaurate at a reference concentration of 1×. Inoculated seeds were immersed at sanitizer concentrations of 5×, 10×, and 15× for 1, 3, 5, and 10 min and then assessed for pathogen survivors by direct plating. The lowest concentration that decreased all three pathogens by >5 log was 15×. After a 3-min exposure to the 15× concentration, populations of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes decreased by >5.45, >5.62, and >6.92 log, respectively, with no sublethal injury and no significant loss in seed germination rate or final sprout yield. The components of this 15× concentration (treatment A) were assessed independently and in various combinations to optimize antimicrobial activity. With inoculated seeds, treatment C (15,000 ppm of Emery 658, 15,000 ppm of lactic acid, and 7,500 ppm of glycerol monolaurate) decreased Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes by 6.23 and 5.57 log, 4.77 and 6.29 log, and 3.86 and 4.21 log after 3 and 5 min of exposure, respectively. Treatment D (15,000 ppm of Emery 658 and 15,000 ppm of lactic acid) reduced Salmonella Typhimurium by >6.90 log regardless of exposure time and E. coli O157:H7 and L. monocytogenes by 4.60 and >5.18 log and 3.55 and 3.14 log after 3 and 5 min, respectively. No significant differences (P > 0.05) were found between treatments A, C, and D. Overall, treatment D, which contained Emery 658 and lactic acid as active ingredients, reduced E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes populations by 3.55 to >6.90 log and may provide a viable alternative to the recommended 20,000 ppm of chlorine for sanitizing alfalfa seeds.


2000 ◽  
Vol 63 (10) ◽  
pp. 1433-1437 ◽  
Author(s):  
KAZUE TAKEUCHI ◽  
CLAUDIA M. MATUTE ◽  
ASHRAF N. HASSAN ◽  
JOSEPH F. FRANK

Attachment of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens on iceberg lettuce was evaluated by plate count and confocal scanning laser microscopy (CSLM). Attachment of each microorganism (∼108 CFU/ml) on the surface and the cut edge of lettuce leaves was determined. E. coli O157:H7 and L. monocytogenes attached preferentially to cut edges, while P. fluorescens attached preferentially to the intact surfaces. Differences in attachment at the two sites were greatest with L. monocytogenes. Salmonella Typhimurium attached equally to the two sites. At the surface, P. fluorescens attached in greatest number, followed by E. coli O157:H7, L. monocytogenes, and Salmonella Typhimurium. Attached microorganisms on lettuce were stained with fluorescein isothiocyanate and visualized by CSLM. Images at the surface and the cut edge of lettuce confirmed the plate count data. In addition, microcolony formation by P. fluorescens was observed on the lettuce surface. Some cells of each microorganism at the cut edge were located within the lettuce tissues, indicating that penetration occurred from the cut edge surface. The results of this study indicate that different species of microorganisms attach differently to lettuce structures, and CSLM can be successfully used to detect these differences.


2000 ◽  
Vol 63 (5) ◽  
pp. 608-612 ◽  
Author(s):  
MOHSEN S. ISSA ◽  
ELLIOT T. RYSER

Commercially pasteurized milk (∼2% milkfat) was heated at 85 to 87°C/30 min, inoculated to contain 2,000 to 6,000 CFU/ml of Listeria monocytogenes, Salmonella Typhimurium DT104, or Escherichia coli O157:H7, cultured at 43°C for 4 h with a 2.0% (wt/wt) commercial yogurt starter culture, stored 12 to 14 h at 6°C, and centrifuged to obtain a Labneh-like product. Alternatively, traditional salted and unsalted Labneh was prepared using a 3.0% (wt/wt) starter culture inoculum, similarly inoculated after manufacture with the aforementioned pathogens, and stored at 6°C and 20°C. Throughout fermentation, Listeria populations remained unchanged, whereas numbers of Salmonella increased 0.33 to 0.47 logs during the first 2 h of fermentation and decreased thereafter. E. coli populations increased 0.46 to 1.19 logs during fermentation and remained that these levels during overnight cold storage. When unsalted and salted Labneh were inoculated after manufacture, Salmonella populations decreased >2 logs in all samples after 2 days, regardless of storage temperature, with the pathogen no longer detected in 4-day-old samples. Numbers of L. monocytogenes decreased from 2.48 to 3.70 to <1.00 to 1.95 logs after 2 days with the pathogen persisting up to 15 days in one lot of salted/unsalted Labneh stored at 6°C. E. coli O157:H7 populations decreased from 3.39 to 3.7 to <1.00 to 2.08 logs during the first 2 days, with the pathogen no longer detected in any 4-dayold samples. Inactivation rates for all three pathogens in Labneh were unrelated to storage temperature or salt content. Unlike L. monocytogenes that persisted up to 15 days in Labneh, rapid inactivation of Salmonella Typhimurium DT104 and E. coli O157:H7 suggests that these emerging foodborne pathogens are of less public health concern in traditional Labneh.


Sign in / Sign up

Export Citation Format

Share Document