scholarly journals EXPERIMENTAL INVESTIGATION OF A CONCEPT WAVE ENERGY CONVERTER FOR HARNESSING LOW AMPLITUDE SEA WAVES

2020 ◽  
Vol 26 (3) ◽  
pp. 97-106
Author(s):  
OLAKUNLE KAYODE ◽  
TITUS OLUWASUJI AJEWOLE ◽  
OLUFEMI ADEBOLA KOYA

This paper presents the results from experimental validation of numerical simulation of a concept wave energy converter for low amplitude sea waves. The device was conceived to contain a wave amplifying device (WAD) to magnify the wave height of incident waves while point absorber buoy(s) efficiently harness the wave energy for electricity production. The validation results show that the optimum aperture angle for the WAD is 45±2 degree, and wave height magnification of 170% is possible. The optimal buoy shape for the device was confirmed as concave wedge buoy. The combination of the two in a single device shall make economical the harnessing of low amplitude waves.

2017 ◽  
Vol 370 ◽  
pp. 120-129
Author(s):  
Mateus das Neves Gomes ◽  
Eduardo Alves Amado ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi ◽  
Luiz Alberto Oliveira Rocha

The ocean wave energy conversion into electricity has been increasingly researched in the last years. There are several proposed converters, among them the Oscillating Water Column (OWC) device has been widely studied. The present paper presents a two-dimensional numerical investigation about the fluid dynamics behavior of an OWC Wave Energy Converter (WEC) into electrical energy. The main goal of this work was to numerically analyze the optimized geometric shape obtained in previous work under incident waves with different heights. To do so, the OWC geometric shape was kept constant while the incident wave height was varied. For the numerical solution it was used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The computational domain is represented by the OWC device coupled with the wave tank. This work allowed to check the influence of the incident wave height on the hydropneumatic power and the amplification factor of the OWC converter. It was possible to identify that the amplification factor increases as the wave period increases, thereby improving the OWC performance. It is worth to highlight that in the real phenomenon the incident waves on the OWC device have periods, lengths and height variables.


Author(s):  
Claudio A. Rodríguez ◽  
Paulo Rosa-Santos ◽  
Francisco Taveira-Pinto

The performance assessment of a wave energy converter (WEC) is a key task. Depending on the layout of the WEC system and type of power take-off (PTO) mechanism, the determination of the absorbed power at model scale involves several challenges, particularly when the measurement of PTO forces is not available. In irregular waves, the task is even more difficult due to the random character of forces and motions. Recent studies carried out with kinetic energy harvesters (KEH) have proposed expressions for the estimation of the power based only on the measured motions. Assuming that the WEC behaves as a KEH at model scale, the expressions for power estimation of KEHs have been heuristically adapted to WECs. CECO, a floating-point absorber, has been used as case study. Experimental data from model tests in irregular waves are presented and analyzed. Spectral analyses have been applied to investigate the WEC responses in the frequency domain and to derive expressions to estimate the absorbed power in irregular waves. The experimental transfer functions of the WEC motions demonstrated that the PTO damping is significantly affected by the incident waves. Based on KEH approach's results, absorbed power and PTO damping coefficients have been estimated. A linear numerical potential model to compute transfer functions has been also implemented and calibrated based on the experimental results. The numerical results allowed the estimation of combined viscous and losses effects and showed that although the KEH approach underestimated the absorbed power, qualitatively reproduced the WEC performance in waves.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


2021 ◽  
pp. 108767
Author(s):  
Ru Xi ◽  
Haicheng Zhang ◽  
DaolinXu ◽  
Huai Zhao ◽  
Ramnarayan Mondal

2020 ◽  
Vol 197 ◽  
pp. 106828 ◽  
Author(s):  
Benjamin W. Schubert ◽  
William S.P. Robertson ◽  
Benjamin S. Cazzolato ◽  
Mergen H. Ghayesh

Author(s):  
Eirini Katsidoniotaki ◽  
Edward Ransley ◽  
Scott Brown ◽  
Johannes Palm ◽  
Jens Engström ◽  
...  

Abstract Accurate modeling and prediction of extreme loads for survivability is of crucial importance if wave energy is to become commercially viable. The fundamental differences in scale and dynamics from traditional offshore structures, as well as the fact that wave energy has not converged around one or a few technologies, implies that it is still an open question how the extreme loads should be modeled. In recent years, several methods to model wave energy converters in extreme waves have been developed, but it is not yet clear how the different methods compare. The purpose of this work is the comparison of two widely used approaches when studying the response of a point-absorber wave energy converter in extreme waves, using the open-source CFD software OpenFOAM. The equivalent design-waves are generated both as equivalent regular waves and as focused waves defined using NewWave theory. Our results show that the different extreme wave modeling methods produce different dynamics and extreme forces acting on the system. It is concluded that for the investigation of point-absorber response in extreme wave conditions, the wave train dynamics and the motion history of the buoy are of high importance for the resulting buoy response and mooring forces.


Sign in / Sign up

Export Citation Format

Share Document