Mean grey water savings through trade of agricultural and industrial commodities (1996-2005)

2017 ◽  
Author(s):  
Gabin Archambault

The national water saving of a country as a result of trade in a certain commodity is calculated as the net import volume of this commodity times the water footprint of the commodity per commodity unit in the country considered. A negative sign means a net national water loss instead of a saving. Here, grey water savings through the trade of industrial and agricultural products are considered. Annual estimations are given for the period 1996-2005, in million cubic meter per year. In the table, data are also disaggregated per commodities: crop products, animal products, and industrial products. Methodology and results can be found here: http://temp.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf For more information, visit the Water Footprint Network: http://temp.waterfootprint.org/?page=files/WaterStat Agriculture Cost Use/Reuse

2018 ◽  
Author(s):  
Najet Guefradj

The national water saving of a country as a result of trade in a certain commodity is calculated as the net import volume of this commodity times the water footprint of the commodity per commodity unit in the country considered. A negative sign means a net national water loss instead of a saving. Here, green water savings through the trade of industrial and agricultural products are considered. Annual estimations are given for the period 1996-2005, in million cubic meter per year. In the table, data are also disaggregated per commodities: crop products, animal products, and industrial products. Methodology and results can be found here: http://temp.waterfootprint.org/Reports/Report50-NationalWaterFootprints-Vol1.pdf For more information, visit the Water Footprint Network: http://temp.waterfootprint.org Agriculture Supply Use/Reuse


2010 ◽  
Vol 14 (1) ◽  
pp. 119-128 ◽  
Author(s):  
F. Bulsink ◽  
A. Y. Hoekstra ◽  
M. J. Booij

Abstract. National water use accounts are generally limited to statistics on water withdrawals in the different sectors of economy. They are restricted to "blue water accounts" related to production, thus excluding (a) "green" and "grey water accounts", (b) accounts of internal and international virtual water flows and (c) water accounts related to consumption. This paper shows how national water-use accounts can be extended through an example for Indonesia. The study quantifies interprovincial virtual water flows related to trade in crop products and assesses the green, blue and grey water footprint related to the consumption of crop products per Indonesian province. The study shows that the average water footprint in Indonesia insofar related to consumption of crop products is 1131 m3/cap/yr, but provincial water footprints vary between 859 and 1895 m3/cap/yr. Java, the most water-scarce island, has a net virtual water import and the most significant external water footprint. This large external water footprint is relieving the water scarcity on this island. Trade will remain necessary to supply food to the most densely populated areas where water scarcity is highest (Java).


2009 ◽  
Vol 6 (4) ◽  
pp. 5115-5137 ◽  
Author(s):  
F. Bulsink ◽  
A. Y. Hoekstra ◽  
M. J. Booij

Abstract. National water use accounts are generally limited to statistics on water withdrawals in the different sectors of economy. They are restricted to "blue water accounts" related to production, thus excluding (a) "green" and "grey water accounts", (b) accounts of internal and international virtual water flows and (c) water accounts related to consumption. This paper shows how national water-use accounts can be extended through an example for Indonesia. The study quantifies interprovincial virtual water flows related to trade in crop products and assesses the green, blue and grey water footprint related to the consumption of crop products per Indonesian province. The study shows that the average water footprint in Indonesia insofar related to consumption of crop products is 1131 m3/cap/yr, but provincial water footprints vary between 859 and 1895 m3/cap/yr. Java, the most water-scarce island, has a net virtual water import and the most significant external water footprint. This large external water footprint is releasing the water scarcity on this island. There are two alternative routes to reduce the overall water footprint of Indonesia. On the one hand, it may be reduced by promoting wise crop trade between provinces – i.e. trade from places with high to places with low water efficiency. On the other hand, the water footprint can be reduced by improving water efficiency in those places that currently have relatively low efficiency, which equalises production efficiencies and thus reduces the need for imports and enhances the opportunities for exports. In any case, trade will remain necessary to supply food to the most densely populated areas where water scarcity is highest (Java).


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Peni Faridah Khaerani

AbstrakKebutuhan akan susu semakin meningkat seiring dengan perkembangan jumlah penduduk, tingkat pendapatan, dan selera masyarakat. Dengan semakin meningkatnya kebutuhan akan susu, permintaan akan populasi sapi perah pun akan meningkat pula. Konsumsi produk hewani berkontribusi lebih dari seperempat water footprint manusia. Air yang dibutuhkan untuk menghasilkan pakan merupakan faktor utama di balik water footprint produk hewani Penelitian ini bertujuan untuk mengetahui besaran water footprint dalam produksi susu sapi serta untuk merumuskan upaya-upaya yang bisa dilakukan untuk mengurangi besarnya water footprint produksi susu sapi. Penelitian ini menggunakan desain penelitian kuantitatif dominant kualitatif. Data dikumpulkan melalui observasi, pengukuran langsung dan wawancara semi-terstruktur pada setiap tahap budidaya. Hasil penelitian menunjukkan bahwa, nilai water footprint  produksi susu sapi adalah 606,88 m3/ton, dengan nilai masing-masing komponennya adalah 233,0 m3/ton untuk green water, 178,1 m3/ton untuk blue water serta 195,78 m3/ton untuk grey water. Upaya-upaya yang dapat dilakukan untuk mengurangi water footprint produksi susu sapi : dengan meningkatkan produktivitas air pada tahap budidaya rumput gajah serta melakukan pengolahan limbah dan menerapkan  metode livestock integrated farming pada tahap budidaya ternak sapi perah.Kata Kunci : Water footprint, produksi susu sapi, upaya-upaya untuk mengurangi water footprintAbstractThe need for milk is increasing in line with population growth, income levels, and public taste. With the increasing demand for milk, dairy cow population demand will increase as well. Consumption of animal products contribute more than a quarter of the human water footprint. Water needed to produce food is a major factor behind the water footprint of animal products This study aims to determine the amount of water footprint in cow milk production as well as to formulate measures that can be done to reduce the amount of water footprint of milk production of cows. This study uses a quantitative dominant qualitative research design. Data were collected through observation, direct measurement  and semi-structured interviews at each stage of cultivation. The results showed that, the value of milk production water footprint is 606.88 m3/ton, with the value of each component is 233,0 m3/ton for green water, 178,1 m3/ton  for blue water and 195.78 m3/ton for grey water. Efforts that can be done to reduce the water footprint of milk production : increasing the productivity of water at the stage of elephant grass cultivation and doing the waste water treatment and apply livestock integrated farming method in dairy cattle farming stage.Keywords: Water footprint, milk production, efforts to reduce the water footprint


2013 ◽  
Vol 67 (4) ◽  
pp. 824-830 ◽  
Author(s):  
D. Vanham

This paper analyses the Austrian water footprint of consumption (WFcons) for different diets: the current diet, a healthy diet (based upon the dietary recommendations issued by the German nutrition society, or DGE), a vegetarian diet and a combined diet between both latter diets. As in many western countries, the current Austrian diet consists of too many products from the groups sugar, crop oils, meat, animal fats, milk, milk products and eggs and not enough products from the groups cereals, rice, potatoes, vegetables and fruit. Especially the consumption of animal products accounts for high WF amounts. These diets result in a substantial reduction (range 922–1,362 l per capita per day (lcd)) of the WFcons for agricultural products, which is currently 3,655 lcd. However, the Austrian water footprint of agricultural production (WFprod = 2,066 lcd) still remains lower than even the WFcons for a vegetarian diet (2,293 lcd). As a result the country is a net virtual water importer regarding agricultural products for all analysed scenarios.


2021 ◽  
Vol 60 (4) ◽  
pp. 3577-3585
Author(s):  
Mohamed ElFetyany ◽  
Hanan Farag ◽  
Samah H. Abd El Ghany

2015 ◽  
Vol 671 ◽  
pp. 412-418
Author(s):  
Lu Lu Xu ◽  
Li Zhu Chen ◽  
Hugh Gong ◽  
Xue Mei Ding

Water footprint is a volumetric indicator of freshwater appropriation. The grey water footprint (GWF) provides a tool to assess the water volume needed to assimilate a pollutant. However, evaluating the impact on water environment cannot rely solely on volumetric consumption of freshwater. It demands accurate assessment criteria to reflect its environmental and ecological effects on ambient water resource. In this paper, a new assessment method is proposed: the effluent toxicity and the Potential Eco-toxic Effects Probe (PEEP) index of aquatic environment are taken into consideration. This method provides a comprehensive indicator for evaluating water footprint, specified in effluents’ ecological impact on ambient water sources.


Sign in / Sign up

Export Citation Format

Share Document