scholarly journals Isolasi Bakteri Pelarut Fosfat Genus Pseudomonas dari Tanah Masam Bekas Areal Perkebunan Karet di Kawasan Institut Teknologi Sumatera

2020 ◽  
Vol 21 (1) ◽  
pp. 40-48
Author(s):  
Muhammad Asril ◽  
Yuni Lisafitri

ABSTRACTPhosphorus (P) is a nutrient that is needed by plants. The availability of this element is greatly influenced by soil pH. As for ultisol soils classified as acid soils, most of the P in the soil is not available and is bound to Fe and Al. Pseudomonas, a phosphate solubilizing bacteria are soil microbes that can improve the availability of P in acid soils. This study aims to obtain Pseudomonas indigenous, a phosphate solubilizing bacteria from the acid soil formerly used by rubber plantations in the Institut Teknologi Sumatera. The study was conducted from April to June 2018 which included soil chemical analysis, isolation of the genus Pseudomonads on specific media, testing of phosphate solubility on solid Pikovskaya medium and simple pathogenicity test on potato tubers. The results showed that the sample soil was acidic with a pH of 4.09 with a P-availability of 0.78 ppm. From the soil samples, four potential isolates were obtained from the genus Pseudomonas, namely GSP 01, GSP 13, GSP 15 and GSP 06, with phosphate solubility indexes of 0.885, 0.639, 0.619 and 0.568, respectively. Isolates have the best phosphate solubilizing index on days 4 through 7. The four potential isolates are not pathogenic, so they can be used as isolates to improve the availability of soil nutrients, especially phosphorus needed by plants.Keywords: acid soil, phosphate solubilizing bacteria, phosphate availability, PseudomonasABSTRAKFosfor (P) merupakan unsur hara yang sangat dibutuhkan oleh tanaman. Ketersediaan unsur ini sangat dipengaruhi oleh pH tanah. Pada jenis tanah ultisol yang digolongkan sebagai tanah masam, sebagian besar dari P di tanah dalam bentuk yang tidak tersedia untuk diserap oleh tanaman dan berikatan dengan Fe dan Al. Pseudomonas pelarut fosfat merupakan mikroba tanah yang dapat memperbaiki ketersediaan P pada tanah masam. Penelitian ini bertujuan untuk mendapatkan Pseudomonas pelarut fosfat indigenous dari tanah masam bekas lahan perkebunan karet di kawasan Institut Teknologi Sumatera. Penelitian dilaksanakan pada bulan April sampai Juni 2018 yang meliputi analisis kimia tanah, isolasi bakteri genus Pseudomonads pada medium spesifik, uji kemampuan pelarutan fosfat pada medium Pikovskaya padat serta uji patogenitas sederhana pada umbi kentang. Hasil penelitian menunjukkan bahwa tanah sampel bersifat masam dengan pH 4,09 dengan P tersedia sebesar 0,78 ppm. Dari sampel tanah diperoleh empat isolat potensial yang diperoleh merupakan genus Pseudomonas yaitu GSP 01, GSP 13, GSP 15 dan GSP 06, dengan indeks pelarutan fosfat berturut-turut sebesar 0,885, 0,639, 0,619 dan 0,568. Isolat memiliki indeks pelarutan fosfat terbaik pada hari ke-4 hingga hari ke-7. Keempat isolat potensial tidak bersifat patogen sehingga mampu dijadikan sebagai isolat yang dapat digunakan untuk memperbaiki ketersediaan unsur hara tanah terutama fosfor yang dibutuhkan oleh tanaman.Kata kunci: bakteri pelarut fosfat, fosfat tersedia, Pseudomonas, tanah masam 

2020 ◽  
Vol 5 (1) ◽  
pp. 300-304
Author(s):  
Betty Natalie Fitriatin ◽  
Dita Fauziah ◽  
Fabira Nur Fitriani ◽  
Dewi Nurma Ningtyas ◽  
Pujawati Suryatmana ◽  
...  

AbstractPhosphorus availability is the major constraint for plant growth in the acid soil ecosystem, due to high fixation by Al and Fe. Microbial fertilizers such as phosphate-solubilizing bacteria (PSB) can increase P availability in soils for root uptake. The objective of the research was to verify the ability of four isolates of PSB isolated from acid soil to solubilize unavailable inorganic phosphate, produce phosphatase, malic acid and indole acetic acid (IAA), as well as increase plant height of maize seedling. The bioassay by growing maize seedling in liquid nutrients has been performed to study the response of seedling to PSB inoculation. The experimental design of bioassay was a randomized block design with five replications. The results showed that the isolates RR 1 and SPR 4 had a relatively high solubilizing index. Moreover, all the PSB isolates had the ability to produce phosphatase and IAA and dissolve P. The performance of PSB-inoculated seedling was better visually and the root length was increased by 66.7–74.5% compared to the control. This result concludes that the species of four isolates needs to be identified by a biomolecular method and formulated as biofertilizers for increasing the maize productivity in the acid soil ecosystem.


2010 ◽  
Vol 12 (3,4) ◽  
pp. 231 ◽  
Author(s):  
M. Ogut ◽  
F. Er ◽  
N. Kandemir

<p>Phosphate solubilizing bacteria can be used as soil or seed inoculum to increase soil phosphorus (P) availability for agricultural purposes. There is also a possibility of using these microorganisms to biotechnologically dissolve phosphate ores for the production of phosphorus fertilizers. Twenty-one soil samples were collected along a highway in Turkey to isolate phosphate solubilizing bacteria. A total of 20 phosphate solubilizers were isolated from the rhizosphere of wheat and maize grown in the pots, which contained the collected soil samples. The isolates were distributed among the genera, <em>Acinetobacter</em> (7), <em>Pseudomonas</em> (7), <em>Enterobacter</em> (2), <em>Enterococcus</em> (1), <em>Escherichia</em> (1), <em>Photorhabdus</em> (1), and <em>Bacillus</em> (1) as determined by the 16S rDNA gene sequence analysis. Since the <em>Acinetobacter</em> species were most effective in Pikovskaya’s agar, which contained tricalcium phosphate for the sole P-source, they were further experimented for the phosphate solubilization in batch cultures. The mean phosphorus dissolved in 5 day incubation ranged between 167 and 1022 ppm P. The initial pH of 7.8  dropped below 4.7 in six isolates with a gluconic acid production in the concentrations ranging between 27.5 and 37.5 mM. <em>Acinetobacter</em> isolates have some potential as an inoculum both for soil and biotechnological P-solubilization.</p>


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 127 ◽  
Author(s):  
Arjun Kafle ◽  
Kevin Cope ◽  
Rachel Raths ◽  
Jaya Krishna Yakha ◽  
Senthil Subramanian ◽  
...  

Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


2012 ◽  
Vol 17 (1) ◽  
pp. 43 ◽  
Author(s):  
Jimena Paola Angulo-Cortés ◽  
Anamaría García-Díaz ◽  
Aura Marina Pedroza ◽  
María Mercedes Martínez-Salgado ◽  
Viviana Gutiérrez-Romero

<strong>Objective</strong>. To design a complex culture media for the production of biomass and acid phosphatases from phosphate-solubilizing bacteria isolated from soil. <strong>Materials</strong> <strong>and methods</strong>. Phosphate-solubilizing bacteria were isolated from oil palm crop soil samples and selected on SMRS1 agar, which were then assessed with antagonism tests to verify their aptitude to form a co-culture. A Box-Behnken experimental design was applied to<br />evaluate the effect of each one of the culture media components on the production of biomass and phosphatase enzymes at a laboratory scale. Finally, microbial growth and enzyme production curves were carried out in order to determine their production times. <strong>Results</strong>. Five phosphate-solubilizing bacterial strains were isolated and three of them were selected based on their solubilization indices.These Gram negative strains with bacillus morphology were identified as A, B and C; their solubilization indices were 2.03, 2.12, and 2.83, respectively. According to the ANOVA analyses for the Box-Behnken design, the only factor which had a significant effect on the phosphatase activity (p&lt;0.01) was hydrolyzed yeast, and the formulation that generated the highest biomass concentration and phosphatase activity (p&lt;0.01) contained 10, 15 and 2.5 gL-1 of phosphoric rock, sucrose and hydrolyzed yeast, respectively. After 24 hours of incubation at 100 rpm, the highest values of biomass and phosphatase activity were obtained: 11.8 logarithmic units of CFU and 12.9 phosphatase units. <strong>Conclusion</strong>. We determined that the culture media based on phosphoric rock 10 gL-1, hydrolyzed yeast 2.5 gL-1 and commercial sucrose 15 gL-1 was ideal for the production of biomass and phosphatases by the strains evaluated; likewise, we proved that the hydrolyzed yeast was the only factor significantly influential for the production of phosphatases.<br /><br /><strong>Key words</strong>: bio-inoculants, phosphate solubilizing microorganisms, phosphatase activity, Box Behnken design.


Author(s):  
Zhikang Wang ◽  
Ziyun Chen ◽  
Xiangxiang Fu

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Li Li ◽  
Xue Qiang Zhao ◽  
Xiao Ying Dong ◽  
Jian Feng Ma ◽  
Ren Fang Shen

Phosphorus (P) deficiency is one of the major factors limiting plant growth in acid soils, where most P is fixed by toxic aluminum (Al). Phosphate-solubilizing bacteria (PSBs) are important for the solubilization of fixed P in soils. Many PSBs have been isolated from neutral and calcareous soils, where calcium phosphate is the main P form, whereas PSBs in acid soils have received relatively little attention. In this study, we isolated a PSB strain from the rhizosphere of Lespedeza bicolor, a plant well adapted to acid soils. On the basis of its 16S rRNA gene sequence, this strain was identified as a Nguyenibacter species and named L1. After incubation of Nguyenibacter sp. L1 for 48 h in a culture medium containing AlPO4 as the sole P source, the concentration of available P increased from 10 to 225 mg L–1, and the pH decreased from 5.5 to 2.5. Nguyenibacter sp. L1 exhibited poor FePO4 solubilization ability. When the pH of non-PSB-inoculated medium was manually adjusted from 5.5 to 2.5, the concentration of available P only increased from 6 to 65 mg L–1, which indicates that growth medium acidification was not the main contributor to the solubilization of AlPO4 by Nguyenibacter sp. L1. In the presence of glucose, but not fructose, Nguyenibacter sp. L1 released large amounts of gluconic acid to solubilize AlPO4. Furthermore, external addition of gluconic acid enhanced AlPO4 solubilization and reduced Al toxicity to plants. We conclude that secretion of gluconic acid by Nguyenibacter sp. L1, which is dependent on glucose supply, is responsible for AlPO4 solubilization as well as the alleviation of Al phytotoxicity by this bacterial strain.


2021 ◽  
Vol 911 (1) ◽  
pp. 012063
Author(s):  
Haswania ◽  
H Karim ◽  
A.A. Azis ◽  
N Iriany ◽  
O Jumadi

Abstract The aim of this study was to isolate and characterize the Phosphate solubilizing bacteria from the rhizosphere of Zea mays L., Jeneponto Regency. This research was conducted in several stages; i.e, sampling, medium preparation, sample dilution, isolation, characterization in the form of gram staining, biochemical tests, and quantitative tests of phosphate solubility. Soil samples were diluted in 0.9% NaCl and soil containing microbes was isolated on the Picovskaya medium. Three isolates were obtained which could dissolve phosphate, namely J2KN1, J3KR2, and J3TG3 isolates. The isolates were generally round in shape with raised elevations, white, slimy, smooth, shiny surface, milky white, shape like coccus and bacillus, and gram-negative. Some of the isolates had positive motility, indole, voges, methyl red, glucose, and sucrose fermentation in the biochemical test. The quantitative tests of the ability to dissolve phosphate showed that J2KN1 isolate had the highest concentration of 51.1 μM, and the J3KR1 and J3TG3 isolates had a concentration of 45.2 μM and 37.6 μM, respectively.


2020 ◽  
Vol 7 (2) ◽  
pp. 53-60
Author(s):  
Fany Juliarti Panjaitan

The plants acquire phosporus from soil solution as phosphate anion. The availability of nutrients is very low in soil and crops compared to the other macronutriens. It precipitates in soil as orthophosphate or absorbed by Al and Fe so that inhibiting the plant growth. Phosphate solubilizing bacteria are able to release the P bond of clay minerals and provide it for crops. The research aimed to get phosphate solubilzing microbes from maize (Zea mays L.) rhizosphere. The soil samples were taken from the maize rhizosphere in both the vegetative and generative phases in the Cikabayan Bogor experimental farm. The phosphate solubilzing bacteria were determined for its ability to dissolve phosphate in liquid Pikovskaya media. The results of research were obtained 16 phosphate solubilizing bacteria, each of the 12 isolates derived from maize rhizosphere in vegetative phase (JM FIO) and 4 isolates in generative phase (JT FIO). The phosphate solubiliton index of each phosphate solubilizing bacteria was varied, namely 2,2-4, the largest dissolution index obtained at JM FIO 1. The largest phosphate dissolving ability in liquid Pikovskaya media was showed by JM FIO 3 isolate, P value was 0,60 ppm or increased 300% of control then followed by JM FIO 9 with 0,43 ppm P. The research also showed that JM FIO 3 and JM FIO 9 were not pathogenic and potentially could be used as biological fertilizer with number of cells at each 4.2 x 109 and 1.2 x 109 CFU/g of carrier.Key Words : Phosphate Solubilizing Microbe, Maize, Rhizosphere


Sign in / Sign up

Export Citation Format

Share Document