scholarly journals Diseño de un medio para la producción de un co-cultivo de bacterias fosfato solubilizadoras con actividad fosfatasa

2012 ◽  
Vol 17 (1) ◽  
pp. 43 ◽  
Author(s):  
Jimena Paola Angulo-Cortés ◽  
Anamaría García-Díaz ◽  
Aura Marina Pedroza ◽  
María Mercedes Martínez-Salgado ◽  
Viviana Gutiérrez-Romero

<strong>Objective</strong>. To design a complex culture media for the production of biomass and acid phosphatases from phosphate-solubilizing bacteria isolated from soil. <strong>Materials</strong> <strong>and methods</strong>. Phosphate-solubilizing bacteria were isolated from oil palm crop soil samples and selected on SMRS1 agar, which were then assessed with antagonism tests to verify their aptitude to form a co-culture. A Box-Behnken experimental design was applied to<br />evaluate the effect of each one of the culture media components on the production of biomass and phosphatase enzymes at a laboratory scale. Finally, microbial growth and enzyme production curves were carried out in order to determine their production times. <strong>Results</strong>. Five phosphate-solubilizing bacterial strains were isolated and three of them were selected based on their solubilization indices.These Gram negative strains with bacillus morphology were identified as A, B and C; their solubilization indices were 2.03, 2.12, and 2.83, respectively. According to the ANOVA analyses for the Box-Behnken design, the only factor which had a significant effect on the phosphatase activity (p&lt;0.01) was hydrolyzed yeast, and the formulation that generated the highest biomass concentration and phosphatase activity (p&lt;0.01) contained 10, 15 and 2.5 gL-1 of phosphoric rock, sucrose and hydrolyzed yeast, respectively. After 24 hours of incubation at 100 rpm, the highest values of biomass and phosphatase activity were obtained: 11.8 logarithmic units of CFU and 12.9 phosphatase units. <strong>Conclusion</strong>. We determined that the culture media based on phosphoric rock 10 gL-1, hydrolyzed yeast 2.5 gL-1 and commercial sucrose 15 gL-1 was ideal for the production of biomass and phosphatases by the strains evaluated; likewise, we proved that the hydrolyzed yeast was the only factor significantly influential for the production of phosphatases.<br /><br /><strong>Key words</strong>: bio-inoculants, phosphate solubilizing microorganisms, phosphatase activity, Box Behnken design.

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


2010 ◽  
Vol 12 (3,4) ◽  
pp. 231 ◽  
Author(s):  
M. Ogut ◽  
F. Er ◽  
N. Kandemir

<p>Phosphate solubilizing bacteria can be used as soil or seed inoculum to increase soil phosphorus (P) availability for agricultural purposes. There is also a possibility of using these microorganisms to biotechnologically dissolve phosphate ores for the production of phosphorus fertilizers. Twenty-one soil samples were collected along a highway in Turkey to isolate phosphate solubilizing bacteria. A total of 20 phosphate solubilizers were isolated from the rhizosphere of wheat and maize grown in the pots, which contained the collected soil samples. The isolates were distributed among the genera, <em>Acinetobacter</em> (7), <em>Pseudomonas</em> (7), <em>Enterobacter</em> (2), <em>Enterococcus</em> (1), <em>Escherichia</em> (1), <em>Photorhabdus</em> (1), and <em>Bacillus</em> (1) as determined by the 16S rDNA gene sequence analysis. Since the <em>Acinetobacter</em> species were most effective in Pikovskaya’s agar, which contained tricalcium phosphate for the sole P-source, they were further experimented for the phosphate solubilization in batch cultures. The mean phosphorus dissolved in 5 day incubation ranged between 167 and 1022 ppm P. The initial pH of 7.8  dropped below 4.7 in six isolates with a gluconic acid production in the concentrations ranging between 27.5 and 37.5 mM. <em>Acinetobacter</em> isolates have some potential as an inoculum both for soil and biotechnological P-solubilization.</p>


2021 ◽  
Vol 911 (1) ◽  
pp. 012063
Author(s):  
Haswania ◽  
H Karim ◽  
A.A. Azis ◽  
N Iriany ◽  
O Jumadi

Abstract The aim of this study was to isolate and characterize the Phosphate solubilizing bacteria from the rhizosphere of Zea mays L., Jeneponto Regency. This research was conducted in several stages; i.e, sampling, medium preparation, sample dilution, isolation, characterization in the form of gram staining, biochemical tests, and quantitative tests of phosphate solubility. Soil samples were diluted in 0.9% NaCl and soil containing microbes was isolated on the Picovskaya medium. Three isolates were obtained which could dissolve phosphate, namely J2KN1, J3KR2, and J3TG3 isolates. The isolates were generally round in shape with raised elevations, white, slimy, smooth, shiny surface, milky white, shape like coccus and bacillus, and gram-negative. Some of the isolates had positive motility, indole, voges, methyl red, glucose, and sucrose fermentation in the biochemical test. The quantitative tests of the ability to dissolve phosphate showed that J2KN1 isolate had the highest concentration of 51.1 μM, and the J3KR1 and J3TG3 isolates had a concentration of 45.2 μM and 37.6 μM, respectively.


2020 ◽  
Vol 7 (2) ◽  
pp. 53-60
Author(s):  
Fany Juliarti Panjaitan

The plants acquire phosporus from soil solution as phosphate anion. The availability of nutrients is very low in soil and crops compared to the other macronutriens. It precipitates in soil as orthophosphate or absorbed by Al and Fe so that inhibiting the plant growth. Phosphate solubilizing bacteria are able to release the P bond of clay minerals and provide it for crops. The research aimed to get phosphate solubilzing microbes from maize (Zea mays L.) rhizosphere. The soil samples were taken from the maize rhizosphere in both the vegetative and generative phases in the Cikabayan Bogor experimental farm. The phosphate solubilzing bacteria were determined for its ability to dissolve phosphate in liquid Pikovskaya media. The results of research were obtained 16 phosphate solubilizing bacteria, each of the 12 isolates derived from maize rhizosphere in vegetative phase (JM FIO) and 4 isolates in generative phase (JT FIO). The phosphate solubiliton index of each phosphate solubilizing bacteria was varied, namely 2,2-4, the largest dissolution index obtained at JM FIO 1. The largest phosphate dissolving ability in liquid Pikovskaya media was showed by JM FIO 3 isolate, P value was 0,60 ppm or increased 300% of control then followed by JM FIO 9 with 0,43 ppm P. The research also showed that JM FIO 3 and JM FIO 9 were not pathogenic and potentially could be used as biological fertilizer with number of cells at each 4.2 x 109 and 1.2 x 109 CFU/g of carrier.Key Words : Phosphate Solubilizing Microbe, Maize, Rhizosphere


Author(s):  
V.Zh. Nguyen ◽  
◽  
T.O. Dao ◽  
E. A. Kalashnikova ◽  
Th.H. Nguyen

The purpose of this work is to isolate bacteria from the pepper rhizosphere that inhibit Rhizoctoniasolani and evaluate in vitro their phosphate solubilizing activity and production of siderophore. Of the different soil samples taken from the pepper fields of An Thanh, An Ninh, Quynh My, QuynhPhudistrict, ThaiBinh province, 48 bacterial strains were isolated. Of these, 5 strains (AT16, VK 4.7, VK 4.8, VK 4.12, VK 4.13) expressed as higher inhibitory Rhizoctonia solani activity were selected. Their inhibitory activity is from 11.11% to 62.22%.


2019 ◽  
Vol 4 (1) ◽  
pp. 134
Author(s):  
Yuni Sri Rahayu

Petroleum is a mixture of hydrocarbon complexes with organic compounds from sulfur, oxygen, nitrogen and metal-containing compounds. These organic compounds can be used as substrate for bacterial growth. This study aimed to isolate and identify hydrocarbon degrading bacteria and phosphate solubilizing bacteria in oil-contaminated soil in Bojonegoro. This study used an exploration method to find each of the two types of hydrocarbon degrading bacteria and phosphate solubilizing bacteria from soil samples in Bojonegoro that contaminated by oil. Identification of isolates bacterial included macroscopic observations of bacteria, gram staining on bacterial cells and physiological tests. Macroscopic observations include the form of colonies, colony diameter, colony color, colony edge, and elevation. The physiological test using Microbact Identification System to determine the physiological characteristics of bacteria so that genera and types of bacteria can be known. The identification of organisms was based on changes in pH and use of the substrate. The results of data analysis were obtained from five types of bacteria from soil samples that contaminated by oil which were successfully isolated. After identification of species was done, four species of bacteria were obtained, namely Pseudomonas pseudomallei, Pseudomonas fluorescens-25, Flavobacterium odoratum, and Enterococcus sp.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Zhong ◽  
Xuewu Hu ◽  
Xingyu Liu ◽  
Xinglan Cui ◽  
Ying Lv ◽  
...  

The remediation of uranium (U) through phosphate-solubilizing bacteria (PSB) is an emerging technique as well as an interesting phenomenon for transforming mobile U into stable minerals in the environment. While studies are well needed for in-depth understanding of the mechanism of U(VI) immobilization by PSB. In this study, two PSB were isolated from a U-tailing repository site. These bacterial strains (ZJ-1 and ZJ-3) were identified as Bacillus spp. by the sequence analysis of 16S ribosomal RNA (rRNA) genes. Incubation of PSB in liquid medium showed that the isolate ZJ-3 could solubilize more than 230 mg L–1 P from glycerol-3-phosphate and simultaneously removed over 70% of 50 mg L–1 U(VI) within 1 h. During this process, the rapid appearance of yellow precipitates was observed. The microscopic and spectroscopic analysis demonstrated that the precipitates were associated with U-phosphate compound in the form of saleeite-like substances. Besides, scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the precipitates confirmed that the extracellular polymeric substances (EPS) might also play a key role in U sequestration. Furthermore, SEM and FTIR analysis revealed that part of U(VI) was adsorbed on the bacterial surface through cellular phosphate, hydroxy, carboxyl, and amide groups. This study provides new insights into the synergistic strategies enhancing U immobilization rates by Bacillus spp. that uses glycerol-3-phosphate as the phosphorus source, the process of which contributes to harmful pollutant biodegradation.


2020 ◽  
Vol 21 (1) ◽  
pp. 40-48
Author(s):  
Muhammad Asril ◽  
Yuni Lisafitri

ABSTRACTPhosphorus (P) is a nutrient that is needed by plants. The availability of this element is greatly influenced by soil pH. As for ultisol soils classified as acid soils, most of the P in the soil is not available and is bound to Fe and Al. Pseudomonas, a phosphate solubilizing bacteria are soil microbes that can improve the availability of P in acid soils. This study aims to obtain Pseudomonas indigenous, a phosphate solubilizing bacteria from the acid soil formerly used by rubber plantations in the Institut Teknologi Sumatera. The study was conducted from April to June 2018 which included soil chemical analysis, isolation of the genus Pseudomonads on specific media, testing of phosphate solubility on solid Pikovskaya medium and simple pathogenicity test on potato tubers. The results showed that the sample soil was acidic with a pH of 4.09 with a P-availability of 0.78 ppm. From the soil samples, four potential isolates were obtained from the genus Pseudomonas, namely GSP 01, GSP 13, GSP 15 and GSP 06, with phosphate solubility indexes of 0.885, 0.639, 0.619 and 0.568, respectively. Isolates have the best phosphate solubilizing index on days 4 through 7. The four potential isolates are not pathogenic, so they can be used as isolates to improve the availability of soil nutrients, especially phosphorus needed by plants.Keywords: acid soil, phosphate solubilizing bacteria, phosphate availability, PseudomonasABSTRAKFosfor (P) merupakan unsur hara yang sangat dibutuhkan oleh tanaman. Ketersediaan unsur ini sangat dipengaruhi oleh pH tanah. Pada jenis tanah ultisol yang digolongkan sebagai tanah masam, sebagian besar dari P di tanah dalam bentuk yang tidak tersedia untuk diserap oleh tanaman dan berikatan dengan Fe dan Al. Pseudomonas pelarut fosfat merupakan mikroba tanah yang dapat memperbaiki ketersediaan P pada tanah masam. Penelitian ini bertujuan untuk mendapatkan Pseudomonas pelarut fosfat indigenous dari tanah masam bekas lahan perkebunan karet di kawasan Institut Teknologi Sumatera. Penelitian dilaksanakan pada bulan April sampai Juni 2018 yang meliputi analisis kimia tanah, isolasi bakteri genus Pseudomonads pada medium spesifik, uji kemampuan pelarutan fosfat pada medium Pikovskaya padat serta uji patogenitas sederhana pada umbi kentang. Hasil penelitian menunjukkan bahwa tanah sampel bersifat masam dengan pH 4,09 dengan P tersedia sebesar 0,78 ppm. Dari sampel tanah diperoleh empat isolat potensial yang diperoleh merupakan genus Pseudomonas yaitu GSP 01, GSP 13, GSP 15 dan GSP 06, dengan indeks pelarutan fosfat berturut-turut sebesar 0,885, 0,639, 0,619 dan 0,568. Isolat memiliki indeks pelarutan fosfat terbaik pada hari ke-4 hingga hari ke-7. Keempat isolat potensial tidak bersifat patogen sehingga mampu dijadikan sebagai isolat yang dapat digunakan untuk memperbaiki ketersediaan unsur hara tanah terutama fosfor yang dibutuhkan oleh tanaman.Kata kunci: bakteri pelarut fosfat, fosfat tersedia, Pseudomonas, tanah masam 


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247309
Author(s):  
Juan Song ◽  
LiJing Min ◽  
JunRong Wu ◽  
Qingfang He ◽  
FengMao Chen ◽  
...  

Phosphate-solubilizing bacteria (PSB) have beneficial effects on plant health and soil composition. To date, studies of PSB in soil have largely been performed under field or greenhouse conditions. However, less is known about the impact of introducing indigenous PSB in the field, including their effects on the local microbial community. In this study, we conducted greenhouse and field experiments to explore the effects of the addition of indigenous PSB on the growth of Chenmou elm (Ulmus chenmoui) and on the diversity and composition of the bacterial community in the soil. We obtained four bacterial isolates with the highest phosphate-solubilizing activity: UC_1 (Pseudomonas sp.), UC_M (Klebsiella sp.), UC_J (Burkholderia sp.), and UC_3 (Chryseobacterium sp.). Sequencing on the Illumina MiSeq platform showed that the inoculated PSB did not become the dominant strains in the U. chenmoui rhizosphere. However, the soil bacterial community structure was altered by the addition of these PSB. The relative abundance of Chloroflexi decreased significantly in response to PSB application in all treatment groups, whereas the populations of several bacteria, including Proteobacteria and Bacteroidetes, increased. Network analysis indicated that Chloroflexi was the most strongly negatively correlated with Proteobacteria, whereas Proteobacteria was strongly positively correlated with Bacteroidetes. Our findings indicate that inoculation with PSB (UC_1, UC_M, UC_J, and UC_3) can improve the growth of U. chenmoui and regulate its rhizosphere microbial community. Therefore, inoculation with these bacterial strains could promote the efficient cultivation and production of high-quality plant materials.


2020 ◽  
Vol 8 (11) ◽  
pp. 1844
Author(s):  
Gylaine Vanissa Tchuisseu Tchakounté ◽  
Beatrice Berger ◽  
Sascha Patz ◽  
Matthias Becker ◽  
Henri Fankem ◽  
...  

Plants are often challenged by multiple abiotic stresses simultaneously. The inoculation of beneficial bacteria is known to enhance plant growth under these stresses, such as phosphorus starvation or salt stress. Here, for the first time, we assessed the efficiency of selected beneficial bacterial strains in improving tomato plant growth to better cope with double stresses in salty and P-deficient soil conditions. Six strains of Arthrobacter and Bacillus with different reservoirs of plant growth-promoting traits were tested in vitro for their abilities to tolerate 2–16% (w/v) NaCl concentrations, and shown to retain their motility and phosphate-solubilizing capacity under salt stress conditions. Whether these selected bacteria promote tomato plant growth under combined P and salt stresses was investigated in greenhouse experiments. Bacterial isolates from Cameroonian soils mobilized P from different phosphate sources in shaking culture under both non-saline and saline conditions. They also enhanced plant growth in P-deficient and salt-affected soils by 47–115%, and their PGP effect was even increased in higher salt stress conditions. The results provide valuable information for prospective production of effective bio-fertilizers based on the combined application of local rock phosphate and halotolerant phosphate-solubilizing bacteria. This constitutes a promising strategy to improve plant growth in P-deficient and salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document