scholarly journals Application of PRISMA satellite hyperspectral imagery to mineral alteration mapping at Cuprite, Nevada, USA

2020 ◽  
Vol 10 (2) ◽  
pp. 87
Author(s):  
Enton Bedini ◽  
Jiang Chen

The PRISMA hyperspectral imaging satellite of the Italian Space Agency was launched into orbit on March 22, 2019. The PRISMA is a pushbroom sensor that records 250 hyperspectral bands in the 0.4-2.5 μm wavelength region at a spatial resolution of 30 m. The swath of the hyperspectral imagery is 30 km. This study evaluates the application of the PRISMA hyperspectral imagery to mineral exploration. The study area is the Cuprite in Nevada, USA. Cuprite has served as test-site for a number of airborne and spaceborne remote sensing imaging systems. The Cuprite PRISMA hyperspectral data were analyzed with the Advanced Coherence Estimator algorithm. The analysis of the hyperspectral imagery accurately mapped the spatial distribution of alunite, kaolinite, hydrated silica, muscovite and buddingtonite. The study shows that the PRISMA hyperspectral imagery is a useful tool for mineral exploration projects in arid and semi-arid environments.  

2021 ◽  
Author(s):  
Zsófia Adrienn Kovács ◽  
János Mészáros ◽  
Mátyás Árvai ◽  
Annamária Laborczi ◽  
Gábor Szatmári ◽  
...  

<p>The estimation of the soil organic carbon (SOC) content plays an important role for carbon sequestration in the context of climate change and soil degradation. Reflectance spectroscopy has proven to be promising technique for SOC quantification in the laboratory and increasingly from air and spaceborne platforms, where hyperspectral imagery provides great potential for mapping SOC on larger scales.</p><p>The PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an earth-observation satellite with a medium spatial resolution hyperspectral radiometer onboard, developed and maintained by the Italian Space Agency.</p><p>The Pan-European Land Use/ Land Cover Area Frame Survey (LUCAS) topsoil database contains soil physical, chemical and spectral data for most European countries. Based on the LUCAS points located in Hungary, a synthetized spectral dataset was created and matched to the spectral characteristic of PRISMA sensor, later used for building up machine learning based models (random forest, artificial neural network). SOC levels for the sample area was predicted using generated models and mainly PRISMA imagery.</p><p>Our sample imagery data was generated from five consecutive, cloud-free PRISMA images covering 4500 km<sup>2</sup> in the central part of the Great Plain in Hungary, which is one of the most important agricultural areas of the country, used mainly for crops on arable lands. The images were recorded in 2020 February when most croplands are not covered by vegetation therefore our tests were implemented on bare soils.</p><p>We tested the prediction accuracy of hyperspectral imagery data supplemented by various environmental datasets as additional predictor variables in four scenarios: (i) using solely hyperspectral imagery data (ii) spectral imagery data, elevation and its derived parameters (e.g. slope, aspect, topographic wetness index etc.) (iii) spectral imagery data and land-use information and (iv) all aforementioned data in fusion.</p><p>For validation two types of datasets were used: (i) measured data at the observation sites of the Hungarian Soil Information and Monitoring System and (ii) the recently compiled national SOC maps., which provides a suitable and formerly tested spatial representation of the carbon stock of the Hungarian soils.</p><p> </p><p><strong>Acknowledgment:</strong> Our research was supported by the Cooperative Doctoral Programme for Doctoral Scholarships (1015642) and by the OTKA thematic research projects K-131820 and K-124290 of the Hungarian National Research, Development and Innovation Office and by the Scholarship of Human Resource Supporter (NTP-NFTÖ-20-B-0022). Our project carried out using PRISMA Products, © of the Italian Space Agency (ASI), delivered under an ASI License to use.</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 3903
Author(s):  
Monica Pepe ◽  
Loredana Pompilio ◽  
Beniamino Gioli ◽  
Lorenzo Busetto ◽  
Mirco Boschetti

This study introduces a first assessment of the capabilities of PRISMA (PRecursore IperSpettrale della Missione Applicativa)—the new hyperspectral satellite sensor of the Italian Space Agency (ASI)—for Non-Photosynthetic Vegetation (NPV) monitoring, a topic which is becoming very relevant in the field of sustainable agriculture, being an indicator of crop residue (CR) presence in the field. Data-sets collected during the mission validation phase in croplands are used for mapping the NPV presence and for modelling the diagnostic absorption band of cellulose around 2.1 μm with an Exponential Gaussian Optimization approach, in the perspective of the prediction of the abundance of crop residues. Results proved that PRISMA data are suitable for these tasks, and call for further investigation to achieve quantitative estimates of specific biophysical variables, also in the framework of other hyperspectral missions.


2020 ◽  
Author(s):  
Biagio Di Mauro ◽  
Roberto Garzonio ◽  
Gabriele Bramati ◽  
Sergio Cogliati ◽  
Edoardo Cremonese ◽  
...  

<p>On the 22<sup>nd</sup> of March 2019, PRISMA (PRecursore IperSpettrale della Missione Applicativa) mission has been launched by the Italian Space Agency (ASI). Since then, the spacecraft has been collecting on demand hyperspectral data of the Earth surface. The imaging spectrometer features 239 bands covering the visible, near infrared and shortwave infrared wavelengths (400-2500 nm) with a spectral resolution <12nm. PRISMA acquires hyperspectral images with a spatial resolution of 30m and a swath of 30 km.</p><p>The satellite mission is still in the initial commissioning phase. During this period, the acquisition of field spectroscopy data contemporary to satellite observation is fundamental. With the aim of calibrating and validating PRISMA observations on snow fields, we organized field campaigns at a high altitude (2160 m) experimental site (Torgnon, Aosta Valley) in the European Alps. During these campaigns, we measured spectral reflectance of snow with a Spectral Evolution spectrometer (350-2500 nm), snow grain size, and snow density. Among different instruments operating at the site (e.g. net radiometer, webcam, sensors for snow depth, snow water equivalent, snow surface temperature etc.), we recently installed an unattended spectrometer acquiring continuous measurements of snow reflectance. This instrument covers part of the visible and near infrared spectral range (400-900 nm) and it was used to analyze the daily evolution of snow reflectance during the snow season.</p><p>In this contribution, we present a preliminary comparison between field and satellite hyperspectral reflectance data of snow. This comparison is fundamental for the future development of algorithms for the estimation of snow physical variables (snow grain size, snow albedo, and concentration of impurities) from satellite hyperspectral data.</p>


Author(s):  
S. Salehi ◽  
M. Karami ◽  
R. Fensholt

Lichens are the dominant autotrophs of polar and subpolar ecosystems commonly encrust the rock outcrops. Spectral mixing of lichens and bare rock can shift diagnostic spectral features of materials of interest thus leading to misinterpretation and false positives if mapping is done based on perfect spectral matching methodologies. Therefore, the ability to distinguish the lichen coverage from rock and decomposing a mixed pixel into a collection of pure reflectance spectra, can improve the applicability of hyperspectral methods for mineral exploration. The objective of this study is to propose a robust lichen index that can be used to estimate lichen coverage, regardless of the mineral composition of the underlying rocks. The performance of three index structures of ratio, normalized ratio and subtraction have been investigated using synthetic linear mixtures of pure rock and lichen spectra with prescribed mixing ratios. Laboratory spectroscopic data are obtained from lichen covered samples collected from Karrat, Liverpool Land, and Sisimiut regions in Greenland. The spectra are then resampled to Hyperspectral Mapper (HyMAP) resolution, in order to further investigate the functionality of the indices for the airborne platform. In both resolutions, a Pattern Search (PS) algorithm is used to identify the optimal band wavelengths and bandwidths for the lichen index. The results of our band optimization procedure revealed that the ratio between R<sub>894-1246</sub> and R<sub>1110</sub> explains most of the variability in the hyperspectral data at the original laboratory resolution (R<sup>2</sup>=0.769). However, the normalized index incorporating R<sub>1106-1121</sub> and R<sub>904-1251</sub> yields the best results for the HyMAP resolution (R<sup>2</sup>=0.765).


2021 ◽  
Author(s):  
Nicolas Mangold ◽  
Livio Tornabene ◽  
Susan Conway ◽  
Anthony Guimpier ◽  
Axel Noblet ◽  
...  

&lt;p&gt;Antoniadi basin is a 330 km diameter Noachian basin localized in the East of Arabia Terra that contains a network of ridges with a tree-like organization. Branched ridges, such as these can form by a variety of processes including the inversion of fluvial deposits, thus potentially highlighting aqueous processes of interest for understanding Mars&amp;#8217; climate evolution. Here, we test this hypothesis by analyzing in details data from Colour and Stereo Surface Imaging System (CaSSIS), High Resolution Imaging Science Experiment (HiRISE) and High Resolution Stereo Camera (HRSC).&lt;/p&gt;&lt;p&gt;Branched ridges are up to 10 km long and from 10 to 200 m wide without obvious organization in width. The branched ridges texture is rubbly with the occurrence of blocks up to ~1 m in size and a complete lack of layering. A HiRISE elevation model shows the local slope is of 0.2&amp;#176; toward South, and thus contrary to the apparent network organization (assuming tributary flows). There is no indication of exhumation of these ridges from layers below the current plains surface. Our observations are not consistent with the interpretation of digitate landforms such as inverted channels: (i) The rubbly texture lacking any layering at meter scale is distinct from inverted channels as observed elsewhere on Mars. (ii) Heads of presumed inverted channels display a lobate shape unlike river springs. (iii) There is no increase in width from small branches toward North as expected for channels with increasing discharge rates downstream. (iv) The slope toward South is contrary to the inferred flow direction to the North. The detailed analysis of these branched ridges shows many characteristics difficult to reconcile with inverted channels formed by fluvial channels flowing northward. Subglacial drainages are known to locally flow against topography, but they are rarely dendritic.&lt;strong&gt; &lt;/strong&gt;Assuming that deposition occurred along the current slope, thus from North to South, the organization of the network requires a control by distributary channels rather than tributary ones. Distributary channels are possible for fluvial flows, but generally limited to braiding regimes or deltaic deposits, of which no further evidence is observed here. The lobate digitate shapes of the degree 1 branches are actually more in line with deposits of viscous flows, thus as terminal branches. Such an interpretation is consistent with lava or mudflows that formed along the current topography. The next step in this study will be to determine more precisely the rheology of these unusual flows.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgments:&lt;/strong&gt; French authors are supported by the CNES. The authors wish to thank the spacecraft and instrument engineering teams. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA&amp;#8217;s PRODEX. The instrument hardware development was also supported by the Italian Space Agency (ASI) (agreement no. I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the Univ. of Arizona (Lunar and Planet. Lab.) and NASA are gratefully acknowledged.&lt;/p&gt;


2021 ◽  
Author(s):  
Valentina Galluzzi ◽  
Luigi Ferranti ◽  
Lorenza Giacomini ◽  
Pasquale Palumbo

&lt;p&gt;The Discovery quadrangle of Mercury (H-11) located in the area between 22.5&amp;#176;S&amp;#8211;65&amp;#176;S and 270&amp;#176;E&amp;#8211;360&amp;#176;E encompasses structures of paramount importance for understanding Mercury&amp;#8217;s tectonics. The quadrangle is named after Discovery Rupes, a NE-SW trending lobate scarp, which is one of the longest and highest on Mercury (600 km in length and 2 km high). By examining the existing maps of this area (Trask and Dzurisin, 1984; Byrne et al., 2014), several other oblique trending structures are visible. More mapping detail could be achieved by using the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Mercury Dual Imaging System (MDIS) imagery.&lt;/p&gt; &lt;p&gt;We aim at mapping the structures of H-11 at high-resolution by using MESSENGER/MDIS basemaps, in order to understand its regional tectonic history by following the work done in the Victoria quadrangle (H-2) (Galluzzi et al., 2019). Differently from H-2, located in the same longitudinal range but at opposite latitudes, this area lacks in N-S trending scarps, such as the Victoria-Endeavour-Antoniadi fault system, which dominates the northern hemisphere structural framework. The existing tectonic theories predict either an isotropic pattern of faults (global contraction) or an ordered distribution and orientation of faults (tidal despinning) for Mercury. If we expect that the existing tectonic patterns were governed by only one of the two processes or both together, it is difficult to understand how such different trends formed within these two complementary areas. The structural study done for H-2 reveals that the geochemical discontinuities present in Mercury&amp;#8217;s crust may have guided and influenced the trend and kinematics of faults in that area (Galluzzi et al., 2019). In particular, the high-magnesium region seems to be associated with fault systems that either follow its boundary or are located within it. These fault systems show distinct kinematics and trends. The south-eastern border of the HMR is located within H-11. Hence, with this study, we aim at complementing the previous one to better describe the tectonics linked to the presence of the HMR. Furthermore, this geostructural map will complement the future geomorphological map of the area and will be part of the 1:3M quadrangle geological map series which are being prepared in view of the BepiColombo mission (Galluzzi, 2019). &lt;em&gt;Acknowledgments: We gratefully acknowledge funding from the Italian Space Agency (ASI) under ASI-INAF agreement 2017-47-H.0.&lt;/em&gt;&lt;/p&gt; &lt;p&gt;Byrne et al. (2014). Nature Geoscience, 7(4), 301-307.&lt;br /&gt;Galluzzi, V. (2019). In: Planetary Cartography and GIS, Springer, Cham, 207-218.&lt;br /&gt;Galluzzi et al. (2019). Journal of Geophysical Research: Planets, 124(10), 2543-2562.&lt;br /&gt;Trask and Dzurisin (1984). USGS, IMAP 1658.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document