An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies

2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.

2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


2021 ◽  
Author(s):  
Yang Cao ◽  
fei song ◽  
Xingtang Zhao ◽  
Liming He ◽  
Yaguang Zhan

Abstract Background: In this study, sodium nitrate (SNP, a donor of nitric oxide) and methyl jasmonate (MJ) were used as exogenous hormones. The experiment was conducted with the offspring (interspecific hybrid) D110 of ash and ash, and their respective parents (non-interspecific hybrid) D113 and 4-3 as experimental materials. The experiment set up three experimental groups of drought stress, exogenous hormone SNP and MJ, and a control group under normal growth (non-drought stress), to study the physiological indicators and gene expression of manchurian ash. Result: The results showed that under drought stress and exogenous application of hormone SNP or MJ, there were significant differences between hybrids and parents in plant growth, photosynthesis, defense enzyme activity, hormone content and gene expression.Conclusions: This experiment provides a new theoretical support for the existing hormone breeding methods of manchurian ash, which can improve the drought resistance of manchurian ash and increase its survival rate in the wild. Increasing the growth rate and breeding efficiency of manchurian ash brings new ideas.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liang ◽  
Kunhua Wei ◽  
Fan Wei ◽  
Shuangshuang Qin ◽  
Chuanhua Deng ◽  
...  

Abstract Background Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. Results To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. Conclusion This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Shi ◽  
Wei Jiao ◽  
Lan Yun ◽  
Zhiqiang Zhang ◽  
Xiujuan Zhang ◽  
...  

Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica (M. ruthenica) is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, microRNAs (miRNAs), and key miRNA-target pairs in M. ruthenica under drought and rewatering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed in three test conditions (CK: control, DS: plants under drought stress, and RW: plants rewatering after drought stress). The degradome sequencing (AllenScore < 4) analysis revealed that 104 miRNAs (11 novel and 93 conserved miRNAs) were identified with 263 target transcripts, forming 296 miRNA-target pairs in three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21, 18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.


2020 ◽  
Author(s):  
Kai Liu ◽  
Mingjuan Li ◽  
Bin Zhang ◽  
Yanchun Cui ◽  
Xuming Yin ◽  
...  

Abstract BackgroundGrain yield is a polygenic trait influenced by environmental and genetic interactions at all growth stages of the cereal plant. However, the molecular mechanisms responsible for coordinating the trade-off or cross-talk between these traits remain elusive.ResultsWe characterized the hitherto unknown function of four STRESS_tolerance and GRAIN_LENGTH (OsSGL) Poaceae ortholog genes, all encoding DUF1645 domain-containing proteins, in simultaneous regulation of grain length, grain weight, and drought stress-tolerance in rice. In normal growth conditions, the four ortholog genes were mainly expressed in the developing roots and panicles of the corresponding species. Over-expressing or heterologous high-level expressing Poaceae OsSGL ortholog genes conferred remarkably increased grain length, weight, and seed setting percentage, as well as significantly improved drought-stress tolerance in transgenic rice. Microscopical analysis also showed that the transgene expression promoted cell division and development. RNA-seq and qRT-PCR analyses revealed 73.8% (18,711) overlapped DEGs in all transgenic plants. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in drought stress-response belonged to hormone (especially auxin and cytokinin) pathways, and signaling processes were apparently affected in the young panicles. ConclusionTogether, these results suggest the four OsSGL orthologs perform a conserved function in regulating stress-tolerance and cell growth by acting via a hormone biosynthesis and signaling pathway. It may also induce a strategy for tailor-made crop yield improvement.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2019 ◽  
Vol 20 (4) ◽  
pp. 852 ◽  
Author(s):  
Xiaohui Yang ◽  
Jie Liu ◽  
Jianfei Xu ◽  
Shaoguang Duan ◽  
Qianru Wang ◽  
...  

Potato (Solanum tuberosum L.) is one of the three most important food crops worldwide; however, it is strongly affected by drought stress. The precise molecular mechanisms of drought stress response in potato are not very well understood. The diploid potato genotype P3-198 has been verified to be highly resistant to drought stress. Here, a time-course experiment was performed to identify drought resistance response genes in P3-198 under polyethylene glycol (PEG)-induced stress using RNA-sequencing. A total of 1665 differentially expressed genes (DEGs) were specifically identified, and based on gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the transcription factor activity, protein kinase activity, and the plant hormone signal transduction process were significantly enriched. Annotation revealed that these DEGs mainly encode transcription factors, protein kinases, and proteins related to redox regulation, carbohydrate metabolism, and osmotic adjustment. In particular, genes encoding abscisic acid (ABA)-dependent signaling molecules were significantly differentially expressed, which revealed the important roles of the ABA-dependent signaling pathway in the early response of P3-198 to drought stress. Quantitative real-time PCR experimental verification confirmed the differential expression of genes in the drought resistance signaling pathway. Our results provide valuable information for understanding potato drought-resistance mechanisms, and also enrich the gene resources available for drought-resistant potato breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.


2019 ◽  
Author(s):  
Xitong Fei ◽  
Haichao Hu ◽  
Jingmiao Li ◽  
Yulin Liu ◽  
Anzhi Wei

ABSTRACTWhen the plant is in an unfavorable environment such as drought or high temperature, it will accumulate a large amount of active oxygen, which will seriously affect the normal growth and development of the plant. The antioxidant system can remove the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. We examined the trends of antioxidant enzymes, miRNAs and their target genes in Zanthoxylum bungeanum under drought stress. According to the changes of antioxidant enzymes, miRNAs and their target genes expression patterns of Zanthoxylum bungeanum under drought stress, an interaction model was constructed to provide a reference for further understanding of plant antioxidant mechanism. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is speculated that in the antioxidant process of Zanthoxylum bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, the expression levels of miRANs and their target genes were basically negatively correlated, indicating that miRNAs are involved in the regulation of the antioxidant system of Zanthoxylum bungeanum.


2019 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Qian-Qian Liu ◽  
Cheng-Bin Xiang

ABSTRACTDrought is one of the most severe environmental factors limiting plant growth and productivity. Plants respond to drought by closing stomata to reduce water loss. The molecular mechanisms underlying plant drought resistance are very complex and yet to be fully understood. While much research attention has been focused on the positive regulation of stomatal closure, less is known about its negative regulation, equally important in this reversible process. Here we show that the MADS-box transcriptional factor AGL16 acts as a negative regulator in drought resistance by regulating both stomatal density and movement. Loss-of-function mutantagl16was more resistant to drought stress with higher relative water content, which was attributed to a reduced leaf stomatal density and more sensitive stomatal closure due to a higher leaf ABA level compared with wild type, whileAGL16overexpression lines displayed the opposite phenotypes.AGL16is preferentially expressed in guard cells and down regulated in response to drought stress. The expression ofCYP707A3andAAO3in ABA metabolism andSDD1in stomatal development was altered by AGL16 as shown inagl16and overexpression lines. Chromatin immunoprecipitation, transient transactivation, and yeast-one-hybrid assays demonstrated that AGL16 bound the CArG motif in the promoter of theCYP707A3,AAO3, andSDD1to regulate their transcription, and therefore alter leaf stomatal density and ABA level. Taken together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


Sign in / Sign up

Export Citation Format

Share Document