scholarly journals Establishing CRISPR/Cas9 in Lipomyces starkeyi

2019 ◽  
Vol 2 (2) ◽  
pp. 51-52
Author(s):  
Zoe Lau ◽  
David Stuart ◽  
Bonnie Mcneil

The goal of this project was to adapt the Yarrowia lipolytica plasmid based CRISPR/Cas9 system for usage in Lipomyces starkeyi. Lipomyces starkeyi is an oleaginous yeast, which synthesizes and stores high amounts of intracellular lipids. This specific yeast can store lipids at concentrations higher than 60% of its dry cell weight. Due to these high concentrations of lipids, L. starkeyi is a desired organism for the production of biofuels and other oleochemicals. However, there is a lack of knowledge and of genetic tools when trying to engineer the cells to produce these lipids for our use. The genome editing tool, CRISPR/Cas9 is efficient and simple, therefore desirable for the engineering of L. starkeyi. The goal was achieved by replacing the Y. lipolytica promoter with a L. starkeyi promoter, inserting guide RNA, as well as confirming cas9 protein expression.

2009 ◽  
Vol 55 (9) ◽  
pp. 1062-1069 ◽  
Author(s):  
Wei Tang ◽  
Sufang Zhang ◽  
Qian Wang ◽  
Haidong Tan ◽  
Zongbao Kent Zhao

The oleaginous yeast Lipomyces starkeyi can accumulate intracellular lipids to over 60% of its cell dry mass under a nitrogen-limited condition. We showed that extracellular and intracellular citrate concentrations of L. starkeyi AS 2.1560 increased and the nicotinamide adenine dinucleotide – isocitrate dehydrogenase (NAD+–IDH) activity decreased at the beginning of the lipid accumulation, suggesting that the attenuation of the NAD+–IDH activity might initiate lipid storage. We next cloned the IDH gene by the methods of degenerate PCR and rapid amplification of cDNA ends. Phylogenetic analyses of the evolutionary relationships among LsIDH1, LsIDH2, and other yeast NAD+–IDHs revealed that the L. starkeyi IDH had a closer relationship with the IDHs of Yarrowia lipolytica . Further real-time PCR analysis showed that the expression levels of both LsIDH1 and LsIDH2 decreased concurrently with the evolution of cellular lipids. Our data should be valuable for understanding the biology of oleaginous yeasts and for further strain engineering of L. starkeyi.


2018 ◽  
Vol 115 (38) ◽  
pp. 9351-9358 ◽  
Author(s):  
Robert M. Yarrington ◽  
Surbhi Verma ◽  
Shaina Schwartz ◽  
Jonathan K. Trautman ◽  
Dana Carroll

Genome editing with CRISPR-Cas nucleases has been applied successfully to a wide range of cells and organisms. There is, however, considerable variation in the efficiency of cleavage and outcomes at different genomic targets, even within the same cell type. Some of this variability is likely due to the inherent quality of the interaction between the guide RNA and the target sequence, but some may also reflect the relative accessibility of the target. We investigated the influence of chromatin structure, particularly the presence or absence of nucleosomes, on cleavage by the Streptococcus pyogenes Cas9 protein. At multiple target sequences in two promoters in the yeast genome, we find that Cas9 cleavage is strongly inhibited when the DNA target is within a nucleosome. This inhibition is relieved when nucleosomes are depleted. Remarkably, the same is not true of zinc-finger nucleases (ZFNs), which cleave equally well at nucleosome-occupied and nucleosome-depleted sites. These results have implications for the choice of specific targets for genome editing, both in research and in clinical and other practical applications.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3575-3575
Author(s):  
Marlies Vanden Bempt ◽  
Charles E de Bock ◽  
Nicole Mentens ◽  
Olga Gielen ◽  
Ellen Geerdens ◽  
...  

Abstract CRISPR/Cas genome editing is a powerful tool to precisely induce chromosomal breaks and to modify genes of interest. Cas9, an RNA-guided DNA endonuclease derived from Streptococcus pyogenes, is able to generate double stranded breaks (DSBs) in the genomic locus to where it is directed by its guide RNA (gRNA) component. The DSBs are subsequently repaired by one of the two main host repair mechanisms: the error-prone Non-homologous end joining (NHEJ) pathway or the very specific Homology-directed repair (HDR) pathway. We aimed to use CRISPR/Cas genome editing to generate the Fip1l1-Pdgfra and Nup214-Abl1 fusion genes by inducing chromosomal rearrangements in the interleukin-3 dependent Ba/F3 cell line. Prior to generating the chromosomal rearrangements, we optimized CRISPR/Cas genome editing in Ba/F3 cells, by targeting Cas9 to exon 24 of CD45, a cell surface transmembrane protein, of which inactivation can be easily detected by flow cytometry. Electroporation of Ba/F3 cells with plasmids expressing Cas9 and the specific guide RNA led to efficient inactivation of the CD45 gene, as measured by flow cytometry (30% of the cells showed loss of CD45 expression). The use of the Cas9 nickase variant led to an increased efficiency of CD45 inactivation with 58% of the cells showing loss of CD45 expression. We then extended these studies to assess the efficiency of homology-directed repair to introduce a specific mutation, using a single strand donor template to generate a premature stop codon in exon 24 of CD45. The successful introduction of the novel stop codon in CD45 was confirmed by PCR amplification of the targeted exon followed by massive parallel sequencing (MiSeq, Illumina) and we observed this endogenous mutation in 80% of the Ba/F3 clones. Having optimised the use and efficiency of CRISPR/Cas in Ba/F3 cells, we aimed to introduce double stranded breaks simultaneously in the genes Fip1l1 and Pdgfra to generate a cell based model for the FIP1L1-PDGFRA fusion gene as observed in chronic eosinophilic leukemia. Double strand breaks were introduced in Fip1l1 exon 23, 31, 32 or 34 together with simultaneous breaks in Pdgfra exon 12, both located on mouse chromosome 5. Upon IL3 removal, cells harbouring the deletion and fusion gene were able to survive, grow and form colonies in semi-solid medium, as was shown before for Ba/F3 cells transduced with retroviral vectors expressing FIP1L1-PDGFRA. The presence of the deletion was confirmed by PCR, and fusion protein expression was detected by Western blotting. A fusion between exon 1 of Fip1l1 and exon 12 of Pdgfra could also transform the cells, which confirmed earlier findings that the transforming capacities of the fusion protein are independent of Fip1l1 and dependent on the interruption of the juxtamembrane region of PDGFRA. The expression and phosphorylation levels of Fip1l1-Pdgfra were compared between the CRISPR/Cas generated Ba/F3 cells and retrovirally transduced cells overexpressing FIP1L1-PDGFRA. As expected, retrovirally transduced cells showed a much higher protein expression level of FIP1L1-PDGFRA, and much stronger phosphorylation compared to the CRISPR/Cas generated cells, in which the endogenous Fip1l1 promoter is used to drive the expression of the fusion protein. We also observed a difference in sensitivity to inhibition by imatinib, a kinase inhibitor with strong activity against PDGFRA. The same strategy was followed to generate a fusion between Nup214 and Abl1, as observed in a subset of T-cell acute lymphoblastic leukemia cases. Ba/F3 cells harbouring the Nup214-Abl1 fusion gene were able to survive and grow independent of IL3. The presence of the fusion gene was confirmed by PCR, and fusion protein expression was detected by Western blotting. Taken together, these data show that CRISPR/Cas induced chromosomal translocations in cells more faithfully recapitulate gene expression levels and sensitivity to chemotherapeutics when compared to retroviral transduction based expression of an oncogene. In conclusion, we have now designed and implemented an optimised platform to use CRISPR/Cas genome editing in Ba/F3 cells and measure gRNA efficacy by massive parallel sequencing. Our data confirm that the CRISPR/Cas genome editing system can be used to generate chromosomal rearrangements in Ba/F3 cells and provides a method to generate improved cell based models for the study of oncogenic tyrosine kinases. Disclosures No relevant conflicts of interest to declare.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Nora Grahl ◽  
Elora G. Demers ◽  
Alex W. Crocker ◽  
Deborah A. Hogan

ABSTRACT Existing CRISPR-Cas9 genome modification systems for use in Candida albicans, which rely on constructs to endogenously express the Cas9 protein and guide RNA, do not work efficiently in other Candida species due to inefficient promoter activity. Here, we present an expression-free method that uses RNA-protein complexes and demonstrate its use in three Candida species known for their drug resistance profiles. We propose that this system will aid the genetic analysis of fungi that lack established genetic systems. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome modification systems have greatly facilitated the genetic analysis of fungal pathogens. In CRISPR-Cas9 genome editing methods designed for use in Candida albicans, DNAs that encode the necessary components are expressed in the target cells. Unfortunately, expression constructs that work efficiently in C. albicans are not necessarily expressed well in other pathogenic species within the genus Candida or the related genus Clavispora. To circumvent the need for species-specific expression constructs, we implemented an expression-free CRISPR genome editing system and demonstrated its successful use in three different non-albicans Candida species: Candida (Clavispora) lusitaniae, Candida glabrata, and Candida auris. In CRISPR-Cas9-mediated genome editing methods, a targeted double-stranded DNA break can be repaired by homologous recombination to a template designed by the investigator. In this protocol, the DNA cleavage is induced upon transformation of purified Cas9 protein in complex with gene-specific and scaffold RNAs, referred to as RNA-protein complexes (RNPs). In all three species, the use of RNPs increased both the number of transformants and the percentage of transformants in which the target gene was successfully replaced with a selectable marker. We constructed mutants defective in known or putative catalase genes in C. lusitaniae, C. glabrata, and C. auris and demonstrated that, in all three species, mutants were more susceptible to hydrogen peroxide than the parental strain. This method, which circumvents the need for expression of CRISPR-Cas9 components, may be broadly useful in the study of diverse Candida species and emergent pathogens for which there are limited genetic tools. IMPORTANCE Existing CRISPR-Cas9 genome modification systems for use in Candida albicans, which rely on constructs to endogenously express the Cas9 protein and guide RNA, do not work efficiently in other Candida species due to inefficient promoter activity. Here, we present an expression-free method that uses RNA-protein complexes and demonstrate its use in three Candida species known for their drug resistance profiles. We propose that this system will aid the genetic analysis of fungi that lack established genetic systems.


2020 ◽  
Vol 26 ◽  
pp. 176-182
Author(s):  
I. S. Hnatiuk ◽  
O. I. Varchenko ◽  
M. F. Parii ◽  
Yu. V. Symonenko

Aim. To create a genetic construct carrying the bacterial protein Cas9 gene, the reporter β-glucuronidase gus gene, as well as the marker phosphinotricin-N-acetyltransferase bar gene for plant genome editing. Methods. Molecular-biological, biotechnological, microbiological and bioinformatic methods were used in the study; Golden Gate molecular cloning method was used to create genetic constructs. Results. The genetic construct pSPE2053 which carries the Cas9 endonuclease gene, the gus and bar genes was created; the assembly correctness of all vector elements was confirmed by polymerase chain reaction; the construct was transferred to Escherichia coli and Agrobacterium tumefaciens cells; β-glucuronidase gene expression was verified by histochemical analysis after Nicotiana rustica L transient genetic transformation. Conclusions. The created genetic construct can be used to edit the plant genome for both stable and transient genetic transformation to accumulate recombinant Cas9 protein. The guide RNA sequences may be subsequently transferred into such plants using either stable or transient genetic transformation or traditional crossing methods. Keywords: cloning, genetic construction, gus and bar genes, Cas9 endonuclease protein, transient expression. 


2021 ◽  
Vol 2 ◽  
Author(s):  
Daniel Allen ◽  
Michael Rosenberg ◽  
Ayal Hendel

CRISPR-Cas9 is quickly revolutionizing the way we approach gene therapy. CRISPR-Cas9 is a complexed, two-component system using a short guide RNA (gRNA) sequence to direct the Cas9 endonuclease to the target site. Modifying the gRNA independent of the Cas9 protein confers ease and flexibility to improve the CRISPR-Cas9 system as a genome-editing tool. gRNAs have been engineered to improve the CRISPR system's overall stability, specificity, safety, and versatility. gRNAs have been modified to increase their stability to guard against nuclease degradation, thereby enhancing their efficiency. Additionally, guide specificity has been improved by limiting off-target editing. Synthetic gRNA has been shown to ameliorate inflammatory signaling caused by the CRISPR system, thereby limiting immunogenicity and toxicity in edited mammalian cells. Furthermore, through conjugation with exogenous donor DNA, engineered gRNAs have been shown to improve homology-directed repair (HDR) efficiency by ensuring donor proximity to the edited site. Lastly, synthetic gRNAs attached to fluorescent labels have been developed to enable highly specific nuclear staining and imaging, enabling mechanistic studies of chromosomal dynamics and genomic mapping. Continued work on chemical modification and optimization of synthetic gRNAs will undoubtedly lead to clinical and therapeutic benefits and, ultimately, routinely performed CRISPR-based therapies.


2020 ◽  
Vol 21 (24) ◽  
pp. 9604
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Michal Ceremuga ◽  
Lukasz Krzowski ◽  
Joanna Saluk-Bijak ◽  
...  

The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR–Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR–Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR–Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR–Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR–Cas9.


2018 ◽  
Author(s):  
Renata M. Martin ◽  
Kazuya Ikeda ◽  
Nobuko Uchida ◽  
Kyle Cromer ◽  
Toshi Nishimura ◽  
...  

AbstractCombination of genome editing and human pluripotent stem cells (hPSCs) offers a platform for in vitro disease modeling, drug discovery and personalized stem cell therapeutics. However, incorporation of large modifications using CRISPR/Cas9-based genome editing in hPSCs typically requires the use of selection markers due to low editing efficiencies. Here we report a novel editing technology in hPSCs using Cas9 protein complexed with chemically modified single guide RNA (sgRNA) and recombinant AAV6 (rAAV6) vectors for donor delivery without marker selection. With these components, we demonstrate targeted integration of a 2.2 kb DNA expression cassette in hPSCs at frequencies up to 94% and 67% at the HBB and MYD88 loci, respectively. We used this protocol to correct the homozygous sickle cell disease (SCD) mutation in an iPSC line derived from a SCD patient with a frequency of 63%. This Cas9/AAV6 system allows for both the integration of large gene cassettes and the creation of single nucleotide changes in hPSCs at high frequencies, eliminating the need for multiple editing steps and marker selection, thus increasing the potential of editing human pluripotent cells for both research and translational applications.


2019 ◽  
Vol 47 (17) ◽  
pp. e99-e99 ◽  
Author(s):  
Pin Lyu ◽  
Parisa Javidi-Parsijani ◽  
Anthony Atala ◽  
Baisong Lu

AbstractTransient expression of the CRISPR/Cas9 machinery will not only reduce risks of mutagenesis from off-target activities, but also decrease possible immune response to Cas9 protein. Building on our recent developing of a system able to package up to 100 copies of Cas9 mRNA in each lentivirus-like particle (LVLP) via the specific interaction between aptamer and aptamer-binding proteins (ABP), here we develop a lentiviral capsid-based bionanoparticle system, which allows efficient packaging of Cas9/sgRNA ribonucleoprotein (RNP). We show that replacing the Tetraloop of sgRNA scaffold with a com aptamer preserves the functions of the guide RNA, and the com-modified sgRNA can package Cas9/sgRNA RNP into lentivirus-like particles via the specific interactions between ABP and aptamer, and sgRNA and Cas9 protein. These RNP bionanoparticles generated Indels on different targets in different cells with efficiencies similar to or better than our recently described Cas9 mRNA LVLPs. The new system showed fast action and reduced off-target rates, and makes it more convenient and efficient in delivering Cas9 RNPs for transient Cas9 expression and efficient genome editing.


Sign in / Sign up

Export Citation Format

Share Document