On the Neural Network Solution of One-Dimensional Wave Problem

2021 ◽  
Vol 5 (6) ◽  
pp. 1106-1112
Author(s):  
Aditya Firman Ihsan

Artificial neural network has become an emerging popular method to handle various problems, especially in case where it has deep multiple neural layers. In this study, we use a deep artificial neural network model to solve one-dimensional wave equation, without any external datasets. Different type of boundary conditions, i.e., Dirichlet, Neumann, and Robin, are used. We analyze the model learning capabilities in a set of settings, such as data setup and the model width and depth. We also present some discussions of advantages and disadvantages of the model in comparison with other matured existing techniques to solve wave equation.  

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Mohammad Alizadeh Mansouri ◽  
Rouzbeh Dabiri

AbstractSoil liquefaction is a phenomenon through which saturated soil completely loses its strength and hardness and behaves the same as a liquid due to the severe stress it entails. This stress can be caused by earthquakes or sudden changes in soil stress conditions. Many empirical approaches have been proposed for predicting the potential of liquefaction, each of which includes advantages and disadvantages. In this paper, a novel prediction approach is proposed based on an artificial neural network (ANN) to adequately predict the potential of liquefaction in a specific range of soil properties. To this end, a whole set of 100 soil data is collected to calculate the potential of liquefaction via empirical approaches in Tabriz, Iran. Then, the results of the empirical approaches are utilized for data training in an ANN, which is considered as an option to predict liquefaction for the first time in Tabriz. The achieved configuration of the ANN is utilized to predict the liquefaction of 10 other data sets for validation purposes. According to the obtained results, a well-trained ANN is capable of predicting the liquefaction potential through error values of less than 5%, which represents the reliability of the proposed approach.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


Author(s):  
С.Н. Полулях ◽  
А.И. Горбованов

The possibility of artificial neural network application to detect nuclear spin echo signals under conditions when the echo amplitude is comparable to the amplitude of the noise is demonstrated. Data obtained by superimposing the model echo signals of a Gaussian form on experimentally recorded noise signals is proposed to use for training the neural network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Wang ◽  
Bailing Wang ◽  
Yunxiao Sun ◽  
Yuliang Wei ◽  
Kai Wang ◽  
...  

The security of industrial control systems (ICSs) has received a lot of attention in recent years. ICSs were once closed networks. But with the development of IT technologies, ICSs have become connected to the Internet, increasing the potential of cyberattacks. Because ICSs are so tightly linked to human lives, any harm to them could have disastrous implications. As a technique of providing protection, many intrusion detection system (IDS) studies have been conducted. However, because of the complicated network environment and rising means of attack, it is difficult to cover all attack classes, most of the existing classification techniques are hard to deploy in a real environment since they cannot deal with the open set problem. We propose a novel artificial neural network based-methodology to solve this problem. Our suggested method can classify known classes while also detecting unknown classes. We conduct research from two points of view. On the one hand, we use the openmax layer instead of the traditional softmax layer. Openmax overcomes the limitations of softmax, allowing neural networks to detect unknown attack classes. During training, on the other hand, a new loss function termed center loss is implemented to improve detection ability. The neural network model learns better feature representations with the combined supervision of center loss and softmax loss. We evaluate the neural network on NF-BoT-IoT-v2 and Gas Pipeline datasets. The experiments show our proposed method is comparable with the state-of-the-art algorithm in terms of detecting unknown classes. But our method has a better overall classification performance.


Author(s):  
Oleksandr Ihorovich Parfeniuk ◽  
Oleksandr Mykolaiovych Naumchuk ◽  
Olena Olehivna Poliukhovych ◽  
Pawel Mazurek

It is proposed the technology of intellectual measurement of expenses with the use of an artificial neural network for overcoming the constraints caused by nonlinear characteristics of ultrasonic flowmeters. It is presented structural scheme of the proposed technology and structure of the model of the neural network


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2018 ◽  
Vol 178 ◽  
pp. 07002 ◽  
Author(s):  
Stanisław Duer ◽  
Konrad Zajkowski ◽  
Serghei Scaticailov ◽  
Paweł Wrzesień

The present article covers the use of an artificial intelligence system in the organization of the prevention of technical objects. For this purpose, the composition of this system including an intelligent diagnostic system and an intelligent maintenance system was characterized and described. An artificial neural network and an expert system, which work among others on the basis of the information developed by the neural network, perform a special function in these systems. It was mentioned in the article that the mathematical model of the regeneration process of the functional properties (prevention) of an object forms the basis of the organization of the prevention activities of technical devices and objects with the use of intelligent systems. This model demonstrated the possibilities and directions for the use of maintenance intelligent systems.


Sign in / Sign up

Export Citation Format

Share Document