scholarly journals Influence of high-temperature annealing on the characteristics of fast electron-irradiated p-n-structures based on neutron doped silicon

Author(s):  
F. P. Korshunov ◽  
N. E. Zhdanovich ◽  
D. N. Zhdanovich

The investigation results of the annealing influence (Тann = 300–800 ºС) on the minority charge currier lifetime tP in the n-base of p-n-structures, manufactured on the base of neutron transmutation doped silicon (NTD) КОФ300, irradiated at room temperature by different fluences (F = 1 · 1014 – 3 · 1016 cm–2) of electrons with the energy of Еe = 4 MeV are presented. It is established that at low electron fluences (F = 1 · 1014 cm–2), the annealing of minority charge currier lifetime tP in the n-base of p-n-structures occurs in two stages: the first – 320–400 ºС and the second – 550–650 ºС. At higher electron fluences (F = 5 · 1015–2 · 1016 cm–2), three annealing stages occur: the first – 400–450 ºС, the second – 520–650 ºС and the third – 710–770 ºС. At this, the structure barrier capacitance C dependences on Тann at high electron fluences show the geometry capacitance up to the annealing temperatures Тann = 400 ºС. In the annealing temperature range of Тann = 420–570 ºС, the increase in С with maximum is seen at Тann = 480 ºС and a subsequent decrease in the geometry capacitance is seen in the annealing temperature range of Тann = 600–670 ºС, and then again the increase in С occurs in the annealing temperature range of Тann = 720–770 ºС reaching the С values corresponding to those of the non-irradiated samples in the annealing temperature range of Тann = 770–800 ºС. The analysis of the DLTS-spectra of the investigated structures has allowed establishing the formation in the annealing process of the deep acceptor level ЕС – 0.68 eV at Тann > 400 ºС, the deep donor level ЕС – 0.32 eV in the annealing temperature range of Тann = 420–570 ºС and the deep acceptor level ЕС – 0.53 eV at Тann > 700 ºС, which satisfactorily explains the dependences of t P and С on Тann obtained in this paper.

1998 ◽  
Vol 513 ◽  
Author(s):  
Yujie Han ◽  
Xunlang Liu ◽  
Jinghua Jiao ◽  
Jiajun Qian ◽  
Yonghai Chen ◽  
...  

ABSTRACTComplexes of vacancy at indium site with one to four hydrogen atoms and isolated hydrogen or hydrogen dimer and other infrared absorption lines, tentatively be assigned to hydrogen related defects were investigated by FTIR. Hydrogen can passivate imperfections, thereby eliminating detrimental electronic states from the energy bandgap.Incorporated hydrogen can introduce extended defects and generate electrically-active defects. Hydrogen also can acts as an actuator for creating of antistructure defects. Isolated hydrogen related defects(e.g. H12+) may play an important role in the conversion of the annealed wafers from semiconducting to the semi-insulating behavior. H2+ may be a deep donor, whose energy level is very near the iron deep acceptor level in the energy gap.


2009 ◽  
Vol 39 (5) ◽  
pp. 577-583 ◽  
Author(s):  
J. Chai ◽  
R. J. Mendelsberg ◽  
R. J. Reeves ◽  
J. Kennedy ◽  
H. von Wenckstern ◽  
...  

2014 ◽  
Vol 23 (9) ◽  
pp. 097101 ◽  
Author(s):  
M. Asghar ◽  
K. Mahmood ◽  
M. A. Hasan ◽  
I. T. Ferguson ◽  
R. Tsu ◽  
...  

1975 ◽  
Vol 16 (8) ◽  
pp. 997-1000 ◽  
Author(s):  
H.J. Mackey ◽  
B.J. Vaughn ◽  
L.M. Rater ◽  
D.G. Seiler

1985 ◽  
Vol 56 (3) ◽  
pp. 303-305 ◽  
Author(s):  
G. Armelles ◽  
J. Barrau ◽  
M. Brousseau ◽  
B. Pajot ◽  
C. Naud

1999 ◽  
Vol 564 ◽  
Author(s):  
P. W. DeHaven ◽  
K. P. Rodbell ◽  
L. Gignac

AbstractThe effectiveness of a TiN capping layer to prevent the conversion of α-titantium to titanium nitride when annealed in a nitrogen ambient has been studied over the temperature range 300–700°C using in-situ high temperature diffraction and transmission electron microscopy. Over the time range of interest (four hours), no evidence of Ti reaction was observed at 300°C. At 450°C. nitrogen was found to diffuse into the Ti to form a Ti(N) solid solution. Above 500°C the titanium is transformed to a second phase: however this reaction follows two different kinetic paths, depending on the annealing temperature. Below 600°C. the reaction proceeds in two stages, with the first stage consisting of Ti(N) formation, and the second stage consisting of the conversion of the Ti(N) with a transformation mechanism characteristic of short range diffusion (grain edge nucleation). Above 600°C, a simple linear transformation rate is observed.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


1991 ◽  
Vol 241 ◽  
Author(s):  
R. A. Metzger ◽  
A. S. Brown ◽  
R. G. Wilson ◽  
T. Liu ◽  
W. E. Stanchina ◽  
...  

ABSTRACTAlInAs and GaInAs lattice matched to InP and grown by MBE over a temperature range of 200 to 350°C (normal growth temperature of 500°C) has been used to enhance the device performance of inverted (where the donor layer lies below the channel) High Electron Mobility Transistors (HEMTs) and Heterojunction Bipolar Transistors (HBTs), respectively. We will show that an AlInAs spacer grown over a temperature range of 300 to 350°C and inserted between the AlInAs donor layer and GaInAs channel significantly reduces Si movement from the donor layer into the channel. This produces an inverted HEMT with a channel charge of 3.0×1012 cm−2 and mobility of 9131 cm2/V-s, as compared to the same HEMT with a spacer grown at 500 °C resulting in a channel charge of 2.3×1012 cm−2 and mobility of 4655 cm2/V-s. We will also show that a GaInAs spacer grown over a temperature range of 300 to 350°C and inserted between the AlInAs emitter and GalnAs base of an npn HBT significantly reduces Be movement from the base into the emitter, thereby allowing higher Be base dopings (up to 1×1020 cm−3) confined to 500 Å base widths, resulting in an AlInAs/GaInAs HBT with an fmax of 73 GHz and ft of 110 GHz.


Sign in / Sign up

Export Citation Format

Share Document