P24.08 Time trends and associated factors to antimicrobial resistance of Pseudomonas aeruginosa infections in hospitalized patients. Spain, 1999–2009

2010 ◽  
Vol 76 ◽  
pp. S70
Author(s):  
T. Alvarez-Espejo ◽  
J. Vaqué ◽  
A. Ramos ◽  
E. Muñez ◽  
D. Monge ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257272
Author(s):  
Habtamu Mekonnen ◽  
Abdurahaman Seid ◽  
Genet Molla Fenta ◽  
Teklay Gebrecherkos

Introduction Hospital admitted patients are at increased risk of nosocomial infections (NIs) with multi-drug resistant (MDR) pathogens which are prevalent in the hospital environment. Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are common causes of NIs worldwide. The objective of this study is to determine antimicrobial resistance profiles and associated factors of Acinetobacter spp and P. aeruginosa NIs among hospitalized patients. Methods A cross-sectional study was conducted at Dessie comprehensive specialized hospital, North-East Ethiopia, from February 1 to April 30, 2020. A total of 254 patients who were suspected of the bloodstream, urinary tract, or surgical site nosocomial infections were enrolled consecutively. Socio-demographic and other variables of interest were collected using a structured questionnaire. Specimens were collected and processed following standard microbiological procedures. Antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Data were analyzed with SPSS version 23 and p-value < 0.05 was considered statistically significant. Results Overall, 13% of patients had nosocomial Acinetobacter spp and/or P. aeruginosa infections. The culture positivity rate was 16(6.3%) for Acinetobacter spp and 18(7.1%) for P. aeruginosa. Patients admitted in the surgical ward (Adjusted odds ratio (AOR):10.66;95% confidence interval (CI):1.22–93.23), pediatric ward (AOR:14.37;95%CI:1.4–148.5), intensive care unit (AOR:41.93;95%CI:4.7–374.7) and orthopedics (AOR:52.21;95%CI:7.5–365) were significantly at risk to develop NIs compared to patients admitted in the medical ward. Patients who took more than two antimicrobial types at admission were 94% (AOR:0.06; 95% CI:0.004–0.84) times more protected from NIs compared to those who did not take any antimicrobial. About 81% of Acinetobacter spp and 83% of P. aeruginosa isolates were MDR. Amikacin and meropenem showed promising activity against Acinetobacter spp and P. aeruginosa isolates. Conclusion The high prevalence of MDR Acinetobacter spp and P. aeruginosa nosocomial isolates enforce treating of patients with NIs based on antimicrobial susceptibility testing results.


Author(s):  
Ali Alyahawi ◽  
Abdul Monem Alhomidi ◽  
Nawal Al-Henhena

Pseudomonas aeruginosa is clinically significant and opportunistic pathogenthat causes infections in hospitalized patients. Antibiotic resistance is a major concern in clinical practice. The ongoing emergence of resistant strains that cause nosocomial infections contributes substantially to the morbidity and mortality of hospitalized patients. Objective of present study was to estimate the prevalence of Pseudomonas aeruginosa and the antimicrobial resistance patterns of P. aeruginosa isolates from hospitalized patients. The study was performed at microbiology department of a local hospital in Sana’a, Yemen. All the patients' samples of hospital departments from January, 2017 to December, 2017 were included. A Total of 2079 samples were collected during the study period. Among them, 193 strains of Pseudomonas spp. were isolated. One hundred ninety three isolates of P. aeruginosa were isolated from different clinical specimens and fully characterized by standard bacteriological procedures. Antimicrobial susceptibility pattern of each isolates was carried out by the Kirby-Bauer disk diffusion method as per CLSI guidelines. Majority of P. aeruginosa were isolated from Sputum, followed by urine specimens. The isolate pathogen showed the highest sensitive to Meropenem (85.5%), followed by Amikacin (80.5%), Imipenem (80.0%), and Piperacillin/tazobactam (77.2). The highest frequency of resistance (96.2%) was observed with amoxicillin /clavulinic Acid followed by cefuroxime 94.6%, ampicillin/ sulbactam 94.5%, Co-Trimoxzole 80.5%, and norfloxacin 54%. The result confirmed the occurrence of drug resistance strains of P. aeruginosa. Meropenem, imipenem, and amikacin, were found to be the most effective antimicrobial drugs. It therefore calls for a very judicious, appropriate treatment regimens selection by the physicians to limit the further spread of antimicrobial resistance P. aeruginosa.


2021 ◽  
Vol 43 (1) ◽  
pp. 19-24
Author(s):  
Santosh K Yadav ◽  
Sangita Sharma ◽  
Shyam K Mishra ◽  
Jeevan B Sherchand

Introduction In this era of modern medicine, antimicrobial resistance can be regarded as a major health calamity. The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa strains poses therapeutic challenges and lead to treatment failure in hospitalized patients. This study was conducted to determine various types of β-lactamases among MDR P. aeruginosa isolates recovered from hospitalized patients. MethodsThis study was conducted at Tribhuvan University Teaching Hospital, Maharajgunj, Nepal. The clinical samples collected from inpatients were processed for detection of P. aeruginosa isolates and antibiotic susceptibility profile was determined. The MDR strains were identified and ceftazidime-resistant isolates were subjected for detection of extended-spectrum-β-lactamase (ESBL), metallo-β-lactamase (MBL), and Klebsiella pneumoniae carbapenemase (KPC). ResultsA total of 161 P. aeruginosa isolates were recovered during the study period encompassing 73.3% (n=118) MDR isolates. The MDR isolates included 50.0% (n=59) from lower respiratory tract infections; and 39.8% (n=47) were from the intensive care unit patients. The MDR isolates showed a high resistance profile towards piperacillin, cephalosporins, and fluoroquinolones (>85%). Resistance to carbapenems and aminoglycosides were up to 80% and 60% respectively. Extended spectrum-β-lactamase, MBL, and KPC mediated resistance were seen in 34.7%, 43.6%, and 14.4% MDR isolates, respectively. ConclusionMultidrug resistance as well as resistance mediated by β-lactamases production were high among P. aeruginosa isolates.  Therefore, early detection of antimicrobial resistance and rational use of antibiotics play a critical role to fight against this MDR pathogen.


Sign in / Sign up

Export Citation Format

Share Document