scholarly journals Pengenalan Pola Tulisan Tangan Aksara Arab Menggunakan Metode Convolution Neural Network

Author(s):  
Nanang Kasim ◽  
Gibran Satya Nugraha

Bahasa Arab adalah bahasa yang dijumpai pada kitab suci agama Islam yaitu berupa Al-Qur’an. Belajar bahasa Arab dengan mengenali bentuk hurufnya merupakan metode yang sangat efektif. Pengenalan pola tulisan tangan aksara Arab merupakan salah satu penelitan yang pernah dilakukan sebelumnya, dimana hasil akurasi yang di dapatkan bervariasi sesuai dengan metode penelitian yang digunakan. Pengenalan pola aksara Arab memiliki banyak tantangan salah satu berbedanya gaya tulisan tangan dan karakter tulisan setiap orang. Penelitian ini bertujuan untuk membangun model machine learning dan mengetahui akurasi yang dihasilkan dari pengenalan pola tulisan tangan aksara Arab menggunakan metode convolution neural network, serta memperbaiki beberapa kekurangan pada penelitian pengenalan pola aksara Arab menggunakan metode CNN yang pernah dilakukan sebelumnya. Convolution neural network merupakan metode klasifikasi dengan memberikan label pada saat melakukan pembelajaran atau tergolong ke dalam supervised learning. Data yang digunakan untuk penelitian ini merupakan data yang bersumber dari tulisan tangan di kertas HVS A4 menggunakan spidol dengan dua kategori yaitu usia 5 sampai 20 tahun dan usia 20 tahun ke atas baik yang sudah pernah belajar aksara Arab maupun belum pernah belajar aksara Arab guna didapatkannya variasi tulisan tangan.

2020 ◽  
Author(s):  
Jinxin Wei

<p><b>According to kids’ learning process, an auto</b><b>-</b><b>encoder</b><b> is designed</b><b> which can be split into two parts. The two parts can work well separately.The top half is an abstract network which is trained by supervised learning and can be used to classify and regress. The bottom half is a concrete network which is accomplished by inverse function and trained by self-supervised learning. It can generate the input of abstract network from concept or label. The network can achieve its intended functionality through testing by mnist dataset and convolution neural network.</b><b> R</b><b>ound function</b><b> is added between the abstract network and concrete network in order</b><b> to get the the representative generation of class.</b><b> T</b><b>he generation ability </b><b> can be increased </b><b>by adding jump connection and negative feedback. At last, the characteristics of </b><b>the</b><b> network</b><b> is discussed</b><b>. </b><b>T</b><b>he input can </b><b>be </b><b>change</b><b>d </b><b>to any form by encoder and then change it back by decoder through inverse function. The concrete network can be seen as the memory stored by the parameters.</b><b> </b><b>Lethe is that when new knowledge input,</b><b> </b><b>the training process make</b><b>s</b><b> the parameter</b><b>s</b><b> change.</b><b></b></p>


Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2302
Author(s):  
Kaiyuan Jiang ◽  
Xvan Qin ◽  
Jiawei Zhang ◽  
Aili Wang

In the noncooperation communication scenario, digital signal modulation recognition will help people to identify the communication targets and have better management over them. To solve problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithms, a kind of communication signal modulation recognition model based on convolution neural network (CNN) is proposed. In this paper, a convolution neural network combines bidirectional long short-term memory (BiLSTM) with a symmetrical structure to successively extract the frequency domain features and timing features of signals and then assigns importance weights based on the attention mechanism to complete the recognition task. Seven typical digital modulation schemes including 2ASK, 4ASK, 4FSK, BPSK, QPSK, 8PSK and 64QAM are used in the simulation test, and the results show that, compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR, which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.


2021 ◽  
Vol 5 (1) ◽  
pp. 21-30
Author(s):  
Rachmat Rasyid ◽  
Abdul Ibrahim

One of the wealth of the Indonesian nation is the many types of ornamental plants. Ornamental plants, for example, the Aglaonema flower, which is much favored by hobbyists of ornamental plants, from homemakers, is a problem to distinguish between types of aglaonema ornamental plants with other ornamental plants. So the authors try to research with the latest technology using a deep learning convolutional neural network method. It is for calcifying aglaonema interest. This research is based on having fascinating leaves and colors. With the study results using the CNN method, the products of aglaonema flowers of Adelia, Legacy, Widuri, RedKochin, Tiara with moderate accuracy value are 56%. In contrast, the aglaonema type Sumatra, RedRuby, has the most accuracy a high of 61%.


2021 ◽  
Vol 248 ◽  
pp. 01012
Author(s):  
Anton Starodub ◽  
Natalia Eliseeva ◽  
Milen Georgiev

The research conducted in this paper is in the field of machine learning. The main object of the research is the learning process of an artificial neural network in order to increase its efficiency. The algorithm based on the analysis of retrospective learning data. The dynamics of changes in the values of the weights of an artificial neural network during training is an important indicator of training efficiency. The algorithm proposed in this work is based on changing the weight gradients values. Changing of the gradients weights makes it possible to understand how actively the network weights change during training. This knowledge helps to diagnose the training process and makes an adjusting the training parameters. The results of the algorithm can be used to train an artificial neural network. The network will help to determine the set of measures (actions) needed to optimize the learning process by the algorithm results.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012028
Author(s):  
Xiaoqing Peng ◽  
Yong Shuai ◽  
Yaxi Gan ◽  
Yaokai Chen

Abstract Aiming at the problem that the current feature selection algorithm can not adapt to both supervised learning data and unsupervised learning data, and had poor feature interpretability, this paper proposed a hybrid feature selection model based on machine learning and knowledge graph. By the idea of hybridization, this model used supervised learning algorithms, unsupervised learning algorithms and knowledge graph technology to model from the perspective of data features and text features. Firstly, the data-based feature weights were obtained through the machine learning model, and then the text-based weights were obtained by using the knowledge graph technology, and the weight sets are combined to obtain a feature matrix with good explanatory properties that meets both the data and text features. Finally, the case analysis proves that the method proposed in this paper has good effects and interpretability.


2021 ◽  
Author(s):  
Jinxin Wei

<p><b>According to kids’ learning process, an auto</b><b>-</b><b>encoder</b><b> is designed</b><b> which can be split into two parts. The two parts can work well separately.The top half is an abstract network which is trained by supervised learning and can be used to classify and regress. The bottom half is a concrete network which is accomplished by inverse function and trained by self-supervised learning. It can generate the input of abstract network from concept or label. The network can achieve its intended functionality through testing by mnist dataset and convolution neural network.</b><b> R</b><b>ound function</b><b> is added between the abstract network and concrete network in order</b><b> to get the the representative generation of class.</b><b> T</b><b>he generation ability </b><b> can be increased </b><b>by adding jump connection and negative feedback. At last, the characteristics of </b><b>the</b><b> network</b><b> is discussed</b><b>. </b><b>T</b><b>he input can </b><b>be </b><b>change</b><b>d </b><b>to any form by encoder and then change it back by decoder through inverse function. The concrete network can be seen as the memory stored by the parameters.</b><b> </b><b>Lethe is that when new knowledge input,</b><b> </b><b>the training process make</b><b>s</b><b> the parameter</b><b>s</b><b> change.</b><b></b></p>


Author(s):  
Tianshu Wang ◽  
Yanpin Chao ◽  
Fangzhou Yin ◽  
Xichen Yang ◽  
Chenjun Hu ◽  
...  

Background: The identification of Fructus Crataegi processed products manually is inefficient and unreliable. Therefore, how to identify the Fructus Crataegis processed products efficiently is important. Objective: In order to efficiently identify Fructus Grataegis processed products with different odor characteristics, a new method based on an electronic nose and convolutional neural network is proposed. Methods: First, the original smell of Fructus Grataegis processed products is obtained by using the electronic nose and then preprocessed. Next, feature extraction is carried out on the preprocessed data through convolution pooling layer Results: The experimental results show that the proposed method has higher accuracy for the identification of Fructus Grataegis processed products, and is competitive with other machine learning based methods. Conclusion: The method proposed in this paper is effective for the identification of Fructus Grataegi processed products.


Sign in / Sign up

Export Citation Format

Share Document