scholarly journals Synthesis, Characterization, and Molecular Docking Against a Receptor Protein FimH of Escherichia coli (4XO8) of Thymidine Derivatives

2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Asraful Alam ◽  
Mohammed Anowar Hosen ◽  
Anowar Hosen ◽  
Yuki Fujii ◽  
Yasuhiro Ozeki ◽  
...  

Abstract. Thymidine is known as a progenitor of nucleosides that have significant biological activity. The widening importance of nucleoside derivatives as unrivaled potential antimicrobial and therapeutic agents has attracted contemplation to the synthesis of thymidine derivatives. In the present study, thymidine was treated with various acyl halides to produce 5ʹ-O-acyl thymidine derivatives by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 5ʹ-O-thymidine derivatives were further modified into three series of 3ʹ-O-acyl thymidine derivatives containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. Additionally, the X-ray powder diffraction (XRD) of these acylated products was studied. For the computational investigation, we have selected eight synthesized thymidine derivatives, which have notable antibacterial activity, and performed molecular docking against bacterial lectin protein FimH of Escherichia coli (4XO8) to suggest a potent inhibitor against bacterial function. Molecular docking was performed using AutoDock Vina to calculate the binding affinities and interactions between the antibacterials and the FimH E. coli (4XO8). It was found that the selected thymidine derivatives have strongly interacted mainly with Tyr48, Tyr137, Asp140, Arg98, Gln133, Phe1, Asn23, Asn135, Lys76, Asp47, Ile13, and Ile52 residues. In silico pharmacokinetic properties were also predicted to search their absorption, metabolism, excretion, and toxicity. This computational examination showed that these thymidine derivatives might be used as potential inhibitors against the promising antibacterial activity for future studies.   Resumen. Se prepararon varios derivados 5ʹ-O-acil timidínicos por acilación directa con rendimientos excelentes que fueron transformados en tres series de derivados 3ʹ-O-acil timidínicos con una amplia variedad de funcionalidades. Estos compuestos fueron la base de un estudio de docking dirigido a la lectina bacteriana FimH de Escherichia coli (4XO8) con la finalidad de proponer un inhibidor contra esta función bacteriana.

2018 ◽  
Vol 69 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Lucia Pintilie ◽  
Amalia Stefaniu ◽  
Alina Ioana Nicu ◽  
Maria Maganu ◽  
Miron Teodor Caproiu

A new series of fluoroquinolone compounds have been obtained by Gould-Jacobs method. The compounds have been characterized by physic-chemical methods (elemental analysis, FTIR, NMR, UV-Vis) and by antimicrobial activity against Gram-positive and Gram-negative microorganisms. For the synthesized compounds have been performed calculations of characteristics and molecular properties, using Spartan�14 Software from Wavefunction, Inc. Irvine, CA. and molecular docking studies using CLC Drug Discovery Workbench 2.4 software, to identify and visualize the most likely interaction ligand (fluoroquinolone) with the receptor protein.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 79 ◽  
Author(s):  
J. M. Flórez-Castillo ◽  
P. Rondón-Villareal ◽  
J. L. Ropero-Vega ◽  
S. Y. Mendoza-Espinel ◽  
J. A. Moreno-Amézquita ◽  
...  

The Ib-M6 peptide has antibacterial activity against non-pathogenic Escherichia coli K-12 strain. The first part of this study determines the antibacterial activity of Ib-M6 against fourteen pathogenic strains of E. coli O157:H7. Susceptibility assay showed that Ib-M6 had values of Minimum Inhibitory Concentration (MIC) lower than streptomycin, used as a reference antibiotic. Moreover, to predict the possible interaction between Ib-M6 and outer membrane components of E. coli, we used molecular docking simulations where FhuA protein and its complex with Lipopolysaccharide (LPS–FhuA) were used as targets of the peptide. FhuA/Ib-M6 complexes had energy values between −39.5 and −40.5 Rosetta Energy Units (REU) and only one hydrogen bond. In contrast, complexes between LPS–FhuA and Ib-M6 displayed energy values between −25.6 and −40.6 REU, and the presence of five possible hydrogen bonds. Hence, the antimicrobial activity of Ib-M6 peptide shown in the experimental assays could be caused by its interaction with the outer membrane of E. coli.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Digafie Zeleke ◽  
Rajalakshmanan Eswaramoorthy ◽  
Zerihun Belay ◽  
Yadessa Melaku

2-Chloroquinoline-3-carbaldehyde and 2-chloro-8-methylquinoline-3-carbaldehyde derivatives were synthesized through Vilsmeier formulation of acetanilide and N-(o-tolyl)acetamide. Aromatic nucleophilic substitution reaction was used to introduce various nucleophiles in place of chlorine under different reaction conditions. The carbaldehyde group was oxidized by permanganate method and reduced with metallic sodium in methanol and ethanol. The synthesized compounds were characterized by UV-Vis, IR, and NMR. The antibacterial activity of the synthesized compounds was screened against two Gram-positive bacteria (Bacillus subtilis ATCC6633 and Staphylococcus aureus ATCC25923) and two Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Most of the compounds displayed potent activity against two or more bacterial strains. Among them, compounds 6 and 15 showed maximum activity against Pseudomonas aeruginosa with mean inhibition zones of 9.67 ± 1.11 and 10.00 ± 0.44 mm, respectively, while ciprofloxacin showed mean inhibition zone of 8.33 ± 0.44 mm at similar concentration. On the other hand, compound 8 exhibited maximum activity against Escherichia coli with inhibition zones of about 9.00 ± 0.55 mm at 300 μg/mL and 11.33 ± 1.11 mm at 500 μg/mL. The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picryl hydrazyl (DPPH), and all of them displayed moderate antioxidant activity, with compound 7 exhibiting the strongest activity. The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with DNA gyrase, all of them were found to have minimum binding energy ranging from –6.0 to –7.33 kcal/mol, and the best result was achieved with compound 11. The findings of the in vitro antibacterial and molecular docking analysis demonstrated that the synthesized compounds have potential of antibacterial activity and can be further optimized to serve as lead compounds.


2018 ◽  
Vol 16 (S1) ◽  
pp. S155-S163 ◽  
Author(s):  
S. Mehalaine ◽  
O. Belfadel ◽  
T. Menasria ◽  
A. Messaili

The present study was carried out to determine, for the first time, the chemical composition and antibacterial activity of essential oils derived from the aerial parts of three aromatic plants Thymus algeriensis Boiss & Reut, Rosmarinus officinalis L., and Salvia officinalis L. growing under semiarid conditions. The essential oils were chemically analyzed and identified by gas chromatography (GC) and GC/ mass spectrometry (GC/MS) and their antimicrobial activity was individually evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using both agar disk diffusion and agar dilution methods. The major constituents of Thymus algeriensis essential oil were identified as camphor (13.62%), 1,8-cineol (6.00%), borneol (5.74%), viridiflorol (4.00%), and linalool (3.93%). For Rosmarinus officinalis essential oil, 48 compounds were characterized, of which the main constituents were camphor (17.09%), Z-β-ocimene (10.88%), isoborneol (9.68%), α-bisabolol (7.89%), and borneol (5.11%). While, Salvia officinalis essential oil was characterized by β-thujone (16.44%), followed by viridiflorol (10.93%), camphor (8.99%), 1,8-cineol (8.11%), trans-caryophyllene (5.85%), and α-humulene (4.69%) as the major components. Notably, results from antibacterial screening indicated that Thymus algeriensis and Salvia officinalis essential oils exhibited a strong inhibitory effect against both Escherichia coli and Staphylococcus aureus compared to Rosmarinus officinalis essential oil. Further, less activity was recorded against Pseudomonas aeruginosa for the three tested essential oils.


2020 ◽  
Vol 17 ◽  
Author(s):  
Igor K. Yakuschenko ◽  
Nataliya N. Pozdeeva ◽  
Viktoriya A. Mumyatova ◽  
Alexey A. Terentiev ◽  
Svyatoslav Ya. Gadomsky

: Iso-octenidine, an isomer of octenidine dihydrochloride, was synthesized and studied for the first time. Isooctenidine was demonstrated to be 3-fold more soluble in water in comparison to original octenidine, and both substances had remarkably similar antibacterial activity (tested on Escherichia Coli and Micrococcus luteus).


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2020 ◽  
Vol 17 (5) ◽  
pp. 396-403
Author(s):  
Nalla Krishna Rao ◽  
Tentu Nageswara Rao ◽  
Botsa Parvatamma ◽  
Y. Prashanthi ◽  
Ravi Kumar Cheedarala

Aims: A series of six 4-benzylidene-2-((1-phenyl-3,4-dihydro isoquinoline-2(1H)-yl)methyloxazol- 5(4H)-one derivatives were synthesized by condensation of substituted aryl aldehydes with 2-(2-(1-phenyl-3,4- dihydro isoquinoline-2(1H)-acetamido)acetic acid in the presence of sodium acetate, acetic anhydride and zinc oxide as catalysts. Background: Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihy droisoquinoline-2(1H)-yl)methyl)oxazol- 5(4H)-one derivatives using 1,2,3,Tetrahydroisoquinoline and their antimicrobial activity. Objective: The title compounds can be synthesized from 1,2,3,4-tetrahydroisoquinoline. Methods: The target molecules, i.e., 4-benzylidene-2-((1-phenyl-3, 4-dihydro isoquinoline-2(1H)-yl) methyl) oxazol-5(4H)-one derivatives (8a-8f) have been synthesized from 1,2,3,4-tetrahydroisoquinoline which was prepared from benzoic acid in few steps. Results: All the six compounds were evaluated based on advanced spectral data (1H NMR, 13C NMR & LCMS), and the chemical structures of all compounds were determined by elemental analysis. Conclusion: Antibacterial activity of the derivatives was examined for the synthesized compounds and results indicate that compound with bromine substitution has a good activity profile.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Sign in / Sign up

Export Citation Format

Share Document