High Efficiency High Stable Large Area Perovskite Solar Module Including 2D Strategy and Polymeric Hole Transport Material

Author(s):  
Narges Yaghoobi Nia ◽  
Mahmoud Zendehdel ◽  
Barbara Paci ◽  
Amanda Generosi ◽  
Zhaoxiang Zheng ◽  
...  
2016 ◽  
Vol 9 (12) ◽  
pp. 3687-3692 ◽  
Author(s):  
Anish Priyadarshi ◽  
Lew Jia Haur ◽  
Paul Murray ◽  
Dongchuan Fu ◽  
Sneha Kulkarni ◽  
...  

A large area and highly stable perovskite solar module (10 cm × 10 cm, active area ∼70 cm2) is demonstrated using low cost processing methods and materials.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guoqing Tong ◽  
Luis K. Ono ◽  
Yuqiang Liu ◽  
Hui Zhang ◽  
Tongle Bu ◽  
...  

AbstractTin dioxide (SnO2) has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells (PSCs). However, scalable fabrication of SnO2 films with uniform coverage, desirable thickness and a low defect density in perovskite solar modules (PSMs) is still challenging. Here, we report preparation of high-quality large-area SnO2 films by chemical bath deposition (CBD) with the addition of KMnO4. The strong oxidizing nature of KMnO4 promotes the conversion from Sn(II) to Sn(VI), leading to reduced trap defects and a higher carrier mobility of SnO2. In addition, K ions diffuse into the perovskite film resulting in larger grain sizes, passivated grain boundaries, and reduced hysteresis of PSCs. Furthermore, Mn ion doping improves both the crystallinity and the phase stability of the perovskite film. Such a multifunctional interface engineering strategy enabled us to achieve a power conversion efficiency (PCE) of 21.70% with less hysteresis for lab-scale PSCs. Using this method, we also fabricated 5 × 5 and 10 × 10 cm2 PSMs, which showed PCEs of 15.62% and 11.80% (active area PCEs are 17.26% and 13.72%), respectively. For the encapsulated 5 × 5 cm2 PSM, we obtained a T80 operation lifetime (the lifespan during which the solar module PCE drops to 80% of its initial value) exceeding 1000 h in ambient condition.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Xinhua Geng ◽  
Ying Zhao ◽  
Xiandan Zhang ◽  
Guofu Hou ◽  
Huizhi Ren ◽  
...  

AbstractThis paper reviews our research progresses of hydrogenated amorphous silicon (a-Si:H) and microcrystalline (μc-Si:H) based thin film solar cells. It coves the three areas of high efficiency, low cost process, and large-area proto-type multi-chamber system design and solar module deposition. With an innovative VHF power profiling technique, we have effectively controlled the crystalline evolution and made uniform μc-Si:H materials along the growth direction, which was used as the intrinsic layers of pin solar cells. We attained a 9.36% efficiency with a μc-Si:H single-junction cell structure. We have successfully resolved the cross-contamination issue in a single-chamber system and demonstrated the feasibility of using single-chamber process for manufacturing. We designed and built a large-area multi-chamber VHF system, which is used for depositing a-Si:H/μc-Si:H micromorph tandem modules on 0.79-m2 glass substrates. Preliminary module efficiency has exceeded 8%.


2014 ◽  
Vol 105 (7) ◽  
pp. 073304 ◽  
Author(s):  
Chris T. G. Smith ◽  
Rhys W. Rhodes ◽  
Michail J. Beliatis ◽  
K. D. G. Imalka Jayawardena ◽  
Lynn J. Rozanski ◽  
...  

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-463-C4-466
Author(s):  
A. Madan ◽  
W. Czubatyj ◽  
J. Yang ◽  
J. McGill ◽  
S. R. Ovshinsky

2021 ◽  
Vol 12 (11) ◽  
pp. 1692-1699
Author(s):  
Ji Hye Lee ◽  
Jinhyo Hwang ◽  
Chai Won Kim ◽  
Amit Kumar Harit ◽  
Han Young Woo ◽  
...  

New polystyrene-based polymers with high π-extended hole transport pendants were synthesized to obtain a low turn-on voltage and high efficiency in solution-processed green TADF-OLEDs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2001 ◽  
Vol 13 (12) ◽  
pp. 1349-1351 ◽  
Author(s):  
M. Gokkavas ◽  
O. Dosunmu ◽  
M.S. Unlu ◽  
G. Ulu ◽  
R.P. Mirin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document