scholarly journals Carbon and Nitrogen Removal in Sequencing Batch Reactor Treating Piggrery Wastewater-Pilot Scale Experiment.

1999 ◽  
Vol 22 (12) ◽  
pp. 990-996 ◽  
Author(s):  
Ju-Hyun KIM ◽  
Tetsuro SAKAMURA ◽  
Nobuo CHIBA ◽  
Osamu NISHIMURA ◽  
Ryuichi SUDO
2002 ◽  
Vol 46 (9) ◽  
pp. 219-227 ◽  
Author(s):  
S. Murat ◽  
E. Atesş Genceli ◽  
R. Tasşli ◽  
N. Artan ◽  
D. Orhon

The paper evaluates the organic carbon and nitrogen removal performance of the sequencing batch reactor (SBR), technology for tannery wastewater. For this purpose, a pilot-scale SBR was installed on site to treat the plain-settled tannery effluent. The study involved wastewater characterization, start-up and operation of the reactor for carbon and nitrogen removal and model evaluation of system performance. Its removal efficiency was compared with that of the existing continuous-flow activated sludge system providing full treatment to wastewater from the Istanbul Tannery Organized Industrial District.


2018 ◽  
Vol 4 (4) ◽  
pp. 569-581 ◽  
Author(s):  
Renzun Zhao ◽  
Hong Zhao ◽  
Rich Dimassimo ◽  
Guoren Xu

IFAS process was coupled with SBR operation in a pilot-scale reactor to verify the feasibility and to evaluate the performance of IFAS-SBR. Significant nitrification improvement in the IFAS-SBR system was observed, which is attributed to both the introduction of attached-growth biomass on media carriers and the “seeding effect” by biofilm sloughing.


2004 ◽  
Vol 50 (10) ◽  
pp. 27-33 ◽  
Author(s):  
E. Lai ◽  
S. Senkpiel ◽  
D. Solley ◽  
J. Keller

The sequencing batch reactor (SBR) process concept was applied to achieve efficient ammonium removal via nitrite under both laboratory and pilot-scale conditions. Both sets of experimental results show that without pH control or carbon addition the nitritation process consistently converted approximately 50% of the ammonium from biosolids dewatering liquids to nitrite with hydraulic retention times (HRT) as short as 10 h. The results from the pilot-scale study also indicate that the selective oxidation of ammonium to nitrite is a reliable process as the accumulation of nitrate was never an issue during a 330-day trial. The SBR process concept was extended to achieve complete nitrogen removal through nitritation and denitritation in the laboratory scale. The experimental results indicate that a total reduction of 96-98% of the ammonium nitrogen from biosolids dewatering liquids (influent concentration typically 1,200 g m-3 ) was achieved with a short HRT of 1.1 d and a removal rate of 1.05 kgNm-3d-1. This process concept was tested at pilot scale where the nitritation process could be started up without temperature control in a short period of time. Nitrogen removal rates up to 1.2 kgNm-3d-1 at an HRT of 0.88 d have been obtained. COD to nitrogen ratios required in the pilot plant were consistently in the range 1.6-1.9 kgCOD kg-1N removed.


2003 ◽  
Vol 48 (1) ◽  
pp. 207-214 ◽  
Author(s):  
A. Goltara ◽  
J. Martinez ◽  
R. Mendez

A 3.5 L Membrane Sequencing Batch Reactor (MSBR) was used for the treatment of a wastewater coming from the beamhouse section of a tannery. The wastewater, produced after the oxidation of sulphide compounds, contained average COD and ammonium concentrations of 550 and 90 mg/L respectively. The system was operated for a period of 150 days, with no sludge removal during the whole period of operation. The biomass concentration inside the reactor varied considerably, with maximum values close to 10 g/L at the end of operation. Low biomass yield values were achieved probably due to the low feed/microorganisms (F/M) ratio. An important accumulation of organic matter in the reactor was noticed, although the COD effluent was not affected due to the permeation through the membrane. The nature of this organic matter is finally discussed. Removal efficiencies close to 100% in ammonium and 90% in COD were achieved and the TN removal efficiency ranged from 60 to 90%.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 319-326 ◽  
Author(s):  
S. Murat ◽  
G. Insel ◽  
N. Artan ◽  
D. Orhon

The effect of temperature on the nitrogen removal performance of the sequencing batch reactor technology is evaluated for tannery wastewater. The study involved the operation of a pilot-scale sequencing batch reactor installed on site to treat the plain-settled effluent. The nitrogen balance of the system is observed for a wide temperature range between 9 to 30°C. The results are evaluated by means of model calibration of COD, nitrate and ammonia nitrogen concentration profiles during cyclic operation. The fates of the major nitrogen parameters are also interpreted on the basis of fundamental stoichiometry for nitrification and denitrification.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 293-301 ◽  
Author(s):  
Marco A. Garzón-Zúñiga ◽  
Simón González-Martínez

The possibility of joining biological phosphorus and nitrogen removal in a biofilm sequencing batch reactor was studied using an operation strategy with four reaction phases: Anaerobic/Aerobic/Anoxic/Aerobic. A 1,000 liter pilot scale reactor, filled with Pall-Rings as biofilm support was fed with municipal wastewater. After operating the system for 615 days, optimal operation conditions were establish to obtain highest removal rates with a well established microbial community. Adequate cycle and phase duration were established and organic loading values were obtained for different treatment purposes. The system worked successfully obtaining removals of COD, phosphates and ammonia nitrogen of 89 ± 1%, 75 ± 15%, and 87 ± 10%, respectively. The high removal efficiencies of P and N were obtained thanks to the establishing relationship between nitrifying bacteria and phosphate accumulating bacteria.


Sign in / Sign up

Export Citation Format

Share Document