scholarly journals Analysis of Flow Field Dynamic Characteristics of Friction Pair Fluid-Film for Heat Pump Mechanical Seal

Author(s):  
Mutellip Ahmat ◽  
Ning Li
2013 ◽  
Vol 455 ◽  
pp. 207-211
Author(s):  
Mutellip Ahmat ◽  
Zhi Wei Niu ◽  
Guzaiayi Abudoumijiti

The friction pair for bellows mechanical seal as a friction element is one of the key components for it. In this research, by based on the computational fluid dynamics (CFD) numerical theory, using the Fluent software, corresponding model and parameters, the fluid-film between the clearance of the sealing ring friction pair for the bellows mechanical seal under such the high-temperature, high-pressure, high-speed as complex working conditions is numerically simulated, the relationship between the carrying-capacity of the fluid-film and the temperature, the viscosity of the fluid-film, the relationship between friction torque of the fluid-film and the speed, viscosity of the fluid-film, the influence factor of leakage are obtained. The researching results provide the scientific basis for the optimization designing of the high parameter bellows mechanical seals.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1057
Author(s):  
Yin Luo ◽  
Yakun Fan ◽  
Yuejiang Han ◽  
Weqi Zhang ◽  
Emmanuel Acheaw

In order to explore the dynamic characteristics of the mechanical seal under different fault degrees, this paper selected the upstream pumping mechanical seal as the object of study. The research established the rotating ring-fluid film-stationary ring 3D model, which was built to analyze the fault mechanism. To study extrusion fault mechanism and characteristics, different dynamic parameters were used in the analysis process. Theoretical analysis, numerical simulation, and comparison were conducted to study the relationship between the fault degree and dynamic characteristics. It is the first time to research the dynamic characteristics of mechanical seals in the specific extrusion fault. This paper proved feasibility and effectiveness of the new analysis method. The fluid film thickness and dynamic characteristics could reflect the degree of the extrusion fault. Results show that the fluid film pressure fluctuation tends to be more intensive under the serious extrusion fault condition. The extrusion fault is more likely to occur when the fluid film thickness is too large or too small. Results illustrate the opening force is affected with the fluid film lubrication status and seal extrusion fault degrees. The fluid film stiffness would not always increase with the rotating speed growth. The seal fault would occur with the increasing of rotating speeds, and the leakage growth fluctuations could reflect the fault degree.


2012 ◽  
Vol 522 ◽  
pp. 441-446
Author(s):  
Qiang Gao ◽  
Mutellip Ahmat ◽  
Li Chao Ren ◽  
Jing Luo

In this research, by based on the computational fluid dynamics (CFD) numerical theory, using the Standard-Turbulence model and the Standard-Wall function, the fluid-film between the clearance of the sealing ring friction pair for the bellows mechanical seal under such the high-temperature, high-pressure, high-speed as complex working conditions was numerically simulated, the pressure fluid and the relationship of the carrying-capacity of the fluid-film between the pressure inlet of seal cavity and the width of the fluid-film, and the results of the numerical analysis was compared with the theoretical value. The researching results provide the scientific basis for the optimization designing of the high parameter bellows mechanical seals.


2020 ◽  
Vol 160 ◽  
pp. 52-62
Author(s):  
Liqiang Sun ◽  
Jianfei Song ◽  
Di Wang ◽  
Jiangyun Wang ◽  
Jiao He ◽  
...  

2014 ◽  
Vol 630 ◽  
pp. 181-187
Author(s):  
Denis Shutin ◽  
Leonid Savin ◽  
Alexander Babin

The paper examines the issues of improving the rotor units by means of using support units with actively changeable characteristics. An overview of the known solutions related to the use of active bearings in various types of turbomachinery is provided. A closer look is given at the design and features of active radial bearings, the main elements of which are fluid film bearings. The results of mathematical modeling of active hybrid bearings are presented. The prospects of the use of this type of supports to improve the dynamic characteristics of rotating machinery, including reducing vibrations caused by various factors, are analyzed. Promising directions of development of active bearings are considered, which primarily involves the modification of system components and rotor motion control system algorithms, including intelligent technologies and artificial intelligence methods.


2021 ◽  
Vol 11 (23) ◽  
pp. 11299
Author(s):  
Liangjie Zheng ◽  
Biao Ma ◽  
Man Chen ◽  
Liang Yu ◽  
Qian Wang

Clutch disengaging dynamic characteristics, including the disengaging duration and the variations of friction pair gaps and friction torque, are crucial to the shifting control of an automatic transmission. In the present paper, the influence of lubrication oil (ATF) temperature on disengaging dynamic characteristics is investigated through a comprehensive numerical model for the clutch disengaging process, which considers the hydrodynamic lubrication, the asperity contact, the heat transfer, the spline resistance, and the impact between the piston and clutch hub. Moreover, the non-uniformity coefficient (NUC) is proposed to characterize the disengaging uniformity of friction pairs. As the ATF temperature increases from 60 °C to 140 °C, the clutch disengaging duration shortens remarkably (shortened by 55.1%); besides, the NUC sees a decreasing trend before a slight increase. When the ATF temperature is 80 °C, the distribution of friction pair gaps is most uniform. During the disengaging process, the increase of ATF temperature not only accelerates the change of the lubrication status between friction pairs but also contributes to the decrease of contact torque and hydrodynamic torque. This research demonstrates for the first time, evidence for clutch disengaging dynamic characteristics with the consideration of ATF temperature.


2020 ◽  
Vol 10 (17) ◽  
pp. 5998 ◽  
Author(s):  
Jianping Yuan ◽  
Yang Chen ◽  
Longyan Wang ◽  
Yanxia Fu ◽  
Yunkai Zhou ◽  
...  

When a pump-jet propeller rotates at high speeds, a tip vortex is usually generated in the tip clearance region. This vortex interacts with the main channel fluid flow leading to the main energy loss of the rotor system. Moreover, operating at a high rotational speed can cause cavitation near the blades which may jeopardize the propulsion efficiency and induce noise. In order to effectively improve the propulsion efficiency of the pump-jet propeller, it is mandatory to research more about the energy loss mechanism in the tip clearance area. Due to the complex turbulence characteristics of the blade tip vortex, the widely used Reynolds averaged Navier–Stokes (RANS) method may not be able to accurately predict the multi-scale turbulent flow in the tip clearance. In this paper, an unsteady numerical simulation was conducted on the three-dimensional full flow field of a pump-jet propeller based on the DES (detached-eddy-simulation) turbulence model and the Z-G-B (Zwart–Gerber–Belamri) cavitation model. The simulation yielded the vortex shape and dynamic characteristics of the vortex core and the surrounding flow field in the tip clearance area. After cavitation occurred, the influence of cavitation bubbles on tip vortices was also studied. The results revealed two kinds of vortices in the tip clearance area, namely tip leakage vortex (TLV) and tip separation vortex (TSV). Slight cavitation at J = 1.02 led to low-frequency and high-frequency pulsation in the TLV vortex core. This occurrence of cavitation promotes the expansion and contraction of the tip vortex. Further, when the advance ratio changes into J = 0.73, a third type of vortex located between TLV and TSV appeared at the trailing edge which runs through the entire rotational cycle. This study has presented the dynamic characteristics of tip vortex including the relationship between cavitation bubbles and TLV inside the pump-jet propeller, which may provide a reference for the optimal design of future pump-jet propellers.


Sign in / Sign up

Export Citation Format

Share Document