scholarly journals Optimization of Injection Process Parameters to Reduce Warpage in Glass Fiber-Reinforced Polyamide Molded Parts

Author(s):  
Faping Jian ◽  
Jitao Du ◽  
Mei Yang
Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


2012 ◽  
Vol 501 ◽  
pp. 294-299 ◽  
Author(s):  
Zhi Bian ◽  
Peng Cheng Xie ◽  
Yu Mei Ding ◽  
Wei Min Yang

This study was aimed at understanding how the process conditions affected the dimensional stability of glass fiber reinforced PP by microcellular injection molding. A design of experiments (DOE) was performed and plane test specimens were produced for the shrinkage and warpage analysis. Injection molding trials were performed by systematically adjusting six process parameters (i.e., Injection speed, Injection pressure, Shot temperature, SCF level, Mold temperature, and Cooling time). By analyzing the statistically significant main and two-factor interaction effects, the results showed that the supercritical fluid (SCF) level and the injection speed affected the shrinkage and warpage of microcellular injection molded parts the most.


2020 ◽  
Vol 184 ◽  
pp. 01029
Author(s):  
Bairoju Shankarachary ◽  
N Sateesh ◽  
Lavu Gopinath ◽  
Siripuram Aparna

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Polyester (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. And as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.


Sign in / Sign up

Export Citation Format

Share Document