scholarly journals A Chaotic Salp Swarm Feature Selection Algorithm for Apple and Tomato Plant Leaf Disease Detection

Plants are seen as vital because they provide mankind with energy. Plant diseases can harm the leaf at any time between planting and harvesting, resulting in enormous losses in crop output and market value. A leaf disease detection system acts asignificant role in agricultural production. A large amount of labour is required for this process as well as an in-depth understanding of plant diseases. Determining the presence of illnesses in plant leaves requires the use of deep learning and machine learning methods, which classify the data based on a specified set. In this paper, apple and tomato leaves disease detection process is carried out by Chaotic Salp Swarm algorithm (CSSA) followed by Bi-directional Long Short Term Memory (Bi-LSTM) technique for classification. We've used the Bi-LSTM architecture to sense disease in tomato and apple leaves in studies. In order to determine the type of leaves, we trained a deep learning network using the PlantVillage dataset of damaged and healthy plant leaves. It is estimated that the trained model achieves a test accuracy of 96%.

Author(s):  
Pallepati Vasavi ◽  
Arumugam Punitha ◽  
T. Venkat Narayana Rao

<span lang="EN-US">A Quick and precise crop leaf disease detection is important to increasing agricultural yield in a sustainable manner. We present a comprehensive overview of recent research in the field of crop leaf disease prediction using image processing (IP), machine learning (ML) and deep learning (DL) techniques in this paper. Using these techniques, crop leaf disease prediction made it possible to get notable accuracies. This article presents a survey of research papers that presented the various methodologies, analyzes them in terms of the dataset, number of images, number of classes, algorithms used, convolutional neural networks (CNN) models employed, and overall performance achieved. Then, suggestions are prepared on the most appropriate algorithms to deploy in standard, mobile/embedded systems, Drones, Robots and unmanned aerial vehicles (UAV). We discussed the performance measures used and listed some of the limitations and future works that requires to be focus on, to extend real time automated crop leaf disease detection system.</span>


2021 ◽  
Vol 35 (4) ◽  
pp. 331-339
Author(s):  
Wiharto ◽  
Fikri Hashfi Nashrullah ◽  
Esti Suryani ◽  
Umi Salamah ◽  
Nurcahya Pradana Taufik Prakisy ◽  
...  

The disease in tomato plants, especially on tomato leaves will have an impact on the quality and quantity of tomatoes produced. Handling disease on tomato leaves that must be done is to detect the type of disease as early as possible, then determine the treatment that must be done. Detection of its types of tomato plant diseases requires sufficient knowledge and experience. The problem is that many beginner farmers in growing tomatoes do not have much knowledge, so they have failed in growing tomatoes. Based on these cases, this study proposes a model for the early detection of disease in tomato leaves based on image processing. The research method used is divided into 5 stages, namely preprocessing, segmentation, feature extraction, classification, and performance evaluation. The feature extraction stage used is texture-based with Gabor filters and color-based filters. The final decision is determined by the Support Vector Machine (SVM) classification algorithm with the Radial Basis Function (RBF) kernel. The test results of the tomato leaf disease detection system produced an average performance parameter of 98.83% specificity, 90.37% sensitivity, 90.34% F1-score, 90.37% accuracy, and 94.60% area under the curve (AUC). Referring to the resulting of the AUC performance, the tomato leaf disease detection system is in the very good category.


Author(s):  
Lu Gao ◽  
Yao Yu ◽  
Yi Hao Ren ◽  
Pan Lu

Pavement maintenance and rehabilitation (M&R) records are important as they provide documentation that M&R treatment is being performed and completed appropriately. Moreover, the development of pavement performance models relies heavily on the quality of the condition data collected and on the M&R records. However, the history of pavement M&R activities is often missing or unavailable to highway agencies for many reasons. Without accurate M&R records, it is difficult to determine if a condition change between two consecutive inspections is the result of M&R intervention, deterioration, or measurement errors. In this paper, we employed deep-learning networks of a convolutional neural network (CNN) model, a long short-term memory (LSTM) model, and a CNN-LSTM combination model to automatically detect if an M&R treatment was applied to a pavement section during a given time period. Unlike conventional analysis methods so far followed, deep-learning techniques do not require any feature extraction. The maximum accuracy obtained for test data is 87.5% using CNN-LSTM.


2021 ◽  
Vol 366 (1) ◽  
Author(s):  
Zhichao Wen ◽  
Shuhui Li ◽  
Lihua Li ◽  
Bowen Wu ◽  
Jianqiang Fu

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1633
Author(s):  
Chreston Miller ◽  
Leah Hamilton ◽  
Jacob Lahne

This paper is concerned with extracting relevant terms from a text corpus on whisk(e)y. “Relevant” terms are usually contextually defined in their domain of use. Arguably, every domain has a specialized vocabulary used for describing things. For example, the field of Sensory Science, a sub-field of Food Science, investigates human responses to food products and differentiates “descriptive” terms for flavors from “ordinary”, non-descriptive language. Within the field, descriptors are generated through Descriptive Analysis, a method wherein a human panel of experts tastes multiple food products and defines descriptors. This process is both time-consuming and expensive. However, one could leverage existing data to identify and build a flavor language automatically. For example, there are thousands of professional and semi-professional reviews of whisk(e)y published on the internet, providing abundant descriptors interspersed with non-descriptive language. The aim, then, is to be able to automatically identify descriptive terms in unstructured reviews for later use in product flavor characterization. We created two systems to perform this task. The first is an interactive visual tool that can be used to tag examples of descriptive terms from thousands of whisky reviews. This creates a training dataset that we use to perform transfer learning using GloVe word embeddings and a Long Short-Term Memory deep learning model architecture. The result is a model that can accurately identify descriptors within a corpus of whisky review texts with a train/test accuracy of 99% and precision, recall, and F1-scores of 0.99. We tested for overfitting by comparing the training and validation loss for divergence. Our results show that the language structure for descriptive terms can be programmatically learned.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5446
Author(s):  
Hyojung Ahn ◽  
Inchoon Yeo

As the workforce shrinks, the demand for automatic, labor-saving, anomaly detection technology that can perform maintenance on advanced equipment such as vehicles has been increasing. In a vehicular environment, noise in the cabin, which directly affects users, is considered an important factor in lowering the emotional satisfaction of the driver and/or passengers in the vehicles. In this study, we provide an efficient method that can collect acoustic data, measured using a large number of microphones, in order to detect abnormal operations inside the machine via deep learning in a quick and highly accurate manner. Unlike most current approaches based on Long Short-Term Memory (LSTM) or autoencoders, we propose an anomaly detection (AD) algorithm that can overcome the limitations of noisy measurement and detection system anomalies via noise signals measured inside the mechanical system. These features are utilized to train a variety of anomaly detection models for demonstration in noisy environments with five different errors in machine operation, achieving an accuracy of approximately 90% or more.


2021 ◽  
Author(s):  
Hepzibah Elizabeth David ◽  
K. Ramalakshmi ◽  
R. Venkatesan ◽  
G. Hemalatha

Tomato crops are infected with various diseases that impair tomato production. The recognition of the tomato leaf disease at an early stage protects the tomato crops from getting affected. In the present generation, the emerging deep learning techniques Convolutional Neural Network (CNNs), Recurrent Neural Network (RNNs), Long-Short Term Memory (LSTMs) has manifested significant progress in image classification, image identification, and Sequence Predictions. Thus by using these computer vision-based deep learning techniques, we developed a new method for automatic leaf disease detection. This proposed model is a robust technique for tomato leaf disease identification that gives accurate and better results than other traditional methods. Early tomato leaf disease detection is made possible by using the hybrid CNN-RNN architecture which utilizes less computational effort. In this paper, the required methods for implementing the disease recognition model with results are briefly explained. This paper also mentions the scope of developing more reliable and effective means of classifying and detecting all plant species.


Sign in / Sign up

Export Citation Format

Share Document