scholarly journals IN-SITU MEASUREMENT OF DIFFUSE ATTENUATION COEFFICIENT AND ITS RELATIONSHIP WITH WATER CONSTITUENT AND DEPTH ESTIMATION OF SHALLOW WATERS BY REMOTE SENSING TECHNIQUE

Author(s):  
Budhi Agung Prasetyo ◽  
Vincentius Paulus Siregar ◽  
Syamsul Bahri Agus ◽  
Wikanti Asriningrum

Diffuse attenuation coefficient, Kd(λ), has an empirical relationship with water depth, thus potentially to be used to estimate the depth of the water based on the light penetration in the water column. The aim of this research is to assess the relationship of diffuse attenuation coefficient with the water constituent and its relationship to estimate the depth of shallow waters of Air Island, Panggang Island and Karang Lebar lagoons and to compare the result of depth estimation from Kd model and derived from Landsat 8 imagery. The measurement of Kd(λ) was carried out using hyperspectral spectroradiometer TriOS-RAMSES with range 320 – 950 nm. The relationship between measurement Kd(λ) on study site with the water constituent was the occurrence of absorption by chlorophyll-a concentration at the blue and green spectral wavelength. Depth estimation using band ratio from Kd(λ) occurred at 442,96 nm and 654,59 nm, which had better relationship with the depth from in-situ measurement compared to the estimation based on Landsat 8 band ratio. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. However, depth estimation based on Kd(λ) ratio was inconsistent due to the bottom albedo reflection because the Kd(λ) measurement was carried out in shallow waters. Estimation of water depth based on Kd(λ) ratio had better results compared to the Landsat 8 band ratio.

2002 ◽  
Vol 33 (2-3) ◽  
pp. 227-240 ◽  
Author(s):  
Helgi Arst ◽  
Ants Erm ◽  
Anu Reinart ◽  
Liis Sipelgas ◽  
Antti Herlevi

The method suggested earlier for estimating the spectra of diffuse attenuation coefficient of light in the water bodies relying on the beam attenuation coefficient measured from water samples, was improved and applied to different types of lakes. Measurement data obtained in 1994-95 and 1997-98 for 18 Estonian and Finnish lakes were used. The spectra of two characteristics were available for our investigations: 1) beam attenuation coefficient estimated from water samples in the laboratory with a spectrophotometer Hitachi U1000; 2) vertical irradiance (diffuse) attenuation coefficient measured in situ with an underwater spectroradiometer LI 1800UW. A total of 70 spectra were considered. Relying on these data the parameters of our earlier model were changed. The criterion of the efficiency of the new version of our model is the coincidence of the spectra of diffuse attenuation coefficient derived from Hitachi U1000 data (Kdc) with those obtained by underwater irradiance measurements (Kdm). Correlation analysis of the model's results gave the relationship Kdm=1.0023Kdc with correlation coefficient 0.961. The respective values of mean relative difference and standard deviation were 5.4% and 0.55 m−1. This method may be useful in conditions where in situ measuring of underwater irradiance spectra cannot be performed because of weather conditions. As the measurement of the underwater radiation field is often a complicated and expensive procedure, our numerical method may be useful for estimating the underwater light climate.


2018 ◽  
Vol 10 (11) ◽  
pp. 1841 ◽  
Author(s):  
Quang Pham ◽  
Nguyen Ha ◽  
Nima Pahlevan ◽  
La Oanh ◽  
Thanh Nguyen ◽  
...  

Analyzing the trends in the spatial distribution of suspended sediment concentration (SSC) in riverine surface water enables better understanding of the hydromorphological properties of its watersheds and the associated processes. Thus, it is critical to identify an appropriate method to quantify spatio-temporal variability in SSC. This study aims to estimate SSC in a highly turbid river, i.e., the Red River in Northern Vietnam, using Landsat 8 (L8) images. To do so, in situ radiometric data together with SSC at 60 sites along the river were measured on two different dates during the dry and wet seasons. Analyses of the in situ data indicated strong correlations between SSC and the band-ratio of green and red channels, i.e., r-squared = 0.75 and a root mean square error of ~0.3 mg/L. Using a subsample of in situ radiometric data (n = 30) collected near-concurrently with one L8 image, four different atmospheric correction methods were evaluated. Although none of the methods provided reasonable water-leaving reflectance spectra (ρw), it was found that the band-ratio of the green-red ratio is less sensitive to uncertainties in the atmospheric correction for mapping SSC compared to individual bands. Therefore, due to its ease of access, standard L8 land surface reflectance products available via U.S. Geological Survey web portals were utilized. With the empirical relationship derived, we produced Landsat-derived SSC distribution maps for a few images collected in wet and dry seasons within the 2013–2017 period. Analyses of image products suggest that (a) the Thao River is the most significant source amongst the three major tributaries (Lo, Da and Thao rivers) providing suspended load to the Red River, and (b) the suspended load in the rainy season is nearly twice larger than that in the dry season, and it correlates highly with the runoff (correlation coefficient = 0.85). Although it is demonstrated that the atmospheric correction in tropical areas over these sediment-rich waters present major challenges in the retrievals of water-leaving reflectance spectra, the study signifies the utility of band-ratio techniques for quantifying SSC in highly turbid river waters. With Sentinel-2A/B data products combined with those of Landsat-8, it would be possible to capture temporal variability in major river systems in the near future.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun-Ting Chen ◽  
Xiao-Qing Chen ◽  
Gui-Sheng Hu ◽  
Yu-Shu Kuo ◽  
Yan-Rong Huang ◽  
...  

In this study, we develop a dimensionless assessment method to evaluate landslide dam formation by considering the relationship between the run-out distance of a tributary debris flow and the width of the main stream, deposition thickness of the tributary debris flow, and the water depth of the main stream. Based on the theory of debris flow run-out distance and fan formation, landslide dam formation may result from a tributary debris flow as a result of two concurrent formation processes: (1) the run-out distance of the tributary debris flow must be greater than the width of the main stream, and (2) the minimum deposition thickness of the tributary debris flow must be higher than the in situ water depth of the main stream. At the confluence, one of four types of depositional scenarios may result: (1) the tributary debris flow enters into the main stream and forms a landslide dam; (2) the tributary debris flow enters into the main stream but overflow occurs, thus preventing complete blockage of the main stream; (3) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment remains partially above the water elevation of the main stream; or (4) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment is fully submerged in the main stream. This method was applied to the analysis of 11 tributary debris flow events during Typhoon Morakot, and the results indicate that the dimensionless assessment method can be used to estimate potential areas of landslide dam formation caused by tributary debris flows. Based on this method, government authorities can determine potential areas of landslide dam formation caused by debris flows and mitigate possible disasters accordingly through a properly prepared response plan, especially for early identification.


2014 ◽  
Vol 627 ◽  
pp. 361-364 ◽  
Author(s):  
Yasuhiro Yamazaki

In this paper, an in-situ measurement of crack size as a function of applied indentation load during indentation test was conducted. To perform the in-situ measurement, an instrumented indentation test machine with the in-situ observation system was developed and used. The joints of transparent ceramics by diffusion bonding were prepared as the specimen used in this study. The indentations were performed at the interface of the joints, and in the monolithic transparent ceramics by means of the instrumented indenter with the in-situ observation system. The relationship between crack shape and indentation load, as well as, the effect of the indenter shape on it were discussed.


Author(s):  
D. J. Zhang ◽  
J. Zhan ◽  
C. X. Wang ◽  
G. Q. Zhou

Abstract. Bathymetry is a key variable in ocean monitoring and measurement research. It becomes more and more important for development of rapid method to invert shallow sea water depth. In this study, a water depth inversion method based on multi-band model is established to analyze the relationship between different bands of Landsat 8 OLI multi-spectral and measured data. The average absolute error of the model is 1.48m at 10–20m water depth and the average relative error is 13.12%. The water depth inversion accuracy under normal conditions are achieved, indicating that the model will have a promising practical application in the future.


2020 ◽  
Vol 143 ◽  
pp. 02003
Author(s):  
Qi Chen ◽  
Mutao Huang ◽  
Kaiyuan Bai ◽  
Xiaojuan Li

Chlorophyll-a (Chl-a) estimation in inland waters is an essential environmental issue. This study aimed to identify a band ratio model for Chl-a simulation using Landsat 8 OLI data and in situ Chl-a measuring in Lake Donghu. The band B1and B2, respectively at the wavelength of 443 nm and 483 nm, in the band ratio model [B1/B2] performed best in Chl-a estimation with the R2 of 0.6215. K-means cluster analysis based on water quality indexes (Chl-a, pH, DO, TN, TP, COD, Turbidity) was conducted to further improve the accuracy of inversion model. The MAPE of the optimal [B1/B2] algorithm has decreased by 4.81% and 39.87% respectively for 17 December 2017 (R2=0.7669, N=42) and 26 March 2018 (R2=0.9156, N=45).


2021 ◽  
Author(s):  
Marwa Khairy ◽  
Hickmat Hossen ◽  
Mohamed Elsahabi ◽  
Shenouda Ghaly ◽  
Andrea Scozzari ◽  
...  

<p><strong>Abstract</strong>  After the construction of the Grand Ethiopian Renaissance Dam (GERD), Nasser Lake (NL)became one of the most challenging hot spots at both local and global level. It is one of the biggest manmade reservoirs in the world and the most important in Egypt. It is created  in the southern part of the Nile River in Upper Egypt after the construction of Aswan High Dam (AHD). The water level in NL might fluctuate between 160 to 182 m above the mean sea level. Monitoring NL  water depth is an expensive and time-consuming activity. This work investigates the possibility to use information from the Sentinel missions to estimate the depth of NL as an inland water body, in the frame of estimating storage variations from satellite measurements. In this preliminary study, we investigated the relationship between the radiance /reflectance of optical imagery from two instruments SLSTR and OLCI instruments hosted by the Sentinel-3A platform and in situ water depth data using the Lyzenga equation. The results  indictaed  that there was a reasonable correlation between Sentinel-3 optical data and in situ water depth data. Also, Heron's formula was used to estimate water storage variations of NL with limited in situ data. In addition, equations governing the relationship between water level and both surface area and water volume were worked out. This study is in the framework of a bilateral project between ASRT of Egypt and CNR of Italy which is still running.</p><p> </p><p><strong>Keywords</strong>: Sentinel, SLSTR, OLCI, Inland water body, Nasser Lake, Egypt, Water Depth, GERD, AHD, Egypt</p>


Sign in / Sign up

Export Citation Format

Share Document