scholarly journals PENGARUH AEROSOL TERHADAP FLUKS RADIASI NETO DI LAPISAN ATAS ATMOSFER DAN DI PERMUKAAN BERDASAR DATA SATELIT [INFLUENCE OF AEROSOL ON NET RADIATION FLUX AT THE TOP OF ATMOSPHERE AND SURFACE BASED ON SATELLITE]

2017 ◽  
Vol 14 (2) ◽  
pp. 27
Author(s):  
NFN Rosida ◽  
Indah Susanti

The direct effects of aerosols on radiation budget in Indonesia have been analyzed based on radiation flux net data from the Clouds and the Earth's Radiant Energy System (CERES) instrument and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra. Radiation budget calculated including short wave and long-wave radiation. Data from March 2000 until February 2010, processed using Grads version 2 to obtain aerosol radiative forcing value. Net radiation in clean sky, estimated using slope method. The analysis showed high temporal variation of aerosols density in the atmosphere with a value AODmax> 2, which generally causes decreases net radiation flux, so providing a cooling effect. The influence of aerosols on the net radiation flux can be very clearly seen in the case of forest fires. AOD in 2006 increased and caused radiation flux anomalies ranging from -9 watt/m-2 to -14 watts/m-2, with the largest decline occurred in the surface. From all the data period, aerosol radiative forcing at TOA level (ARFTOA) on Indonesia was -0.49 watt/m-2 and aerosol radiative forcing at the surface level (ARFSurf) on Indonesia was -17.72 watt/m-2, that influence to the Indonesian climate condition.

2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2008 ◽  
Vol 8 (3) ◽  
pp. 8585-8628 ◽  
Author(s):  
D. Santos ◽  
M. J. Costa ◽  
A. M. Silva

Abstract. The estimation of radiative forcing due to desert dust and forest fires aerosols is a very important issue since these particles are very efficient at scattering and absorbing both short and longwave radiation. In this work, the evaluation of the aerosol radiative forcing at the top of the atmosphere over the south of Portugal is made, particularly in the regions of Évora and of Cabo da Roca. The radiative transfer calculations combine ground-based and satellite measurements, to estimate the top of the atmosphere direct SW aerosol radiative forcing. The method developed to retrieve the surface spectral reflectance is also presented, based on ground-based measurements of the aerosol optical properties combined with the satellite-measured radiances. The aerosol direct radiative effect is shown to be very sensitive to the underlying surface, since different surface spectral reflectance values may originate different forcing values. The results obtained also illustrate the importance of considering the actual aerosol properties, in this case measured by ground-based instrumentation, particularly the aerosol single scattering albedo, because different aerosol single scattering albedo values can flip the sign of the direct SW aerosol radiative forcing. The instantaneous direct SW aerosol radiative forcing values obtained at the top of the atmosphere are, in the majority of the cases, negative, indicating a tendency for cooling the Earth. For Desert Dust aerosols, over Évora land region, the average forcing efficiency is estimated to be −25 W/m2/AOT0.55 whereas for Cabo da Roca area, the average forcing efficiency is −46 W/m2/AOT0.55. In the presence of Forest Fire aerosols, over Cabo da Roca region, the average value of forcing efficiency is −28 W/m2/AOT0.55 and over Évora region an average value of −33 W/m2/AOT0.55 is found.


2021 ◽  
Author(s):  
Matthew Christensen ◽  
Andrew Gettelman ◽  
Jan Cermak ◽  
Guy Dagan ◽  
Michael Diamond ◽  
...  

Abstract. Aerosol-cloud interactions (ACI) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The non-linearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can also be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatio-temporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite data sets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Opportunistic experiments have significantly improved process level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus, demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.


2014 ◽  
Vol 14 (19) ◽  
pp. 10601-10618 ◽  
Author(s):  
S. K. Ebmeier ◽  
A. M. Sayer ◽  
R. G. Grainger ◽  
T. A. Mather ◽  
E. Carboni

Abstract. The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002–2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002–2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes – including those from passive degassing, Strombolian activity and minor explosions – lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2–8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm−2 at distances of 150–400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.


2011 ◽  
Vol 50 (12) ◽  
pp. 2490-2503 ◽  
Author(s):  
Pamela E. Mlynczak ◽  
G. Louis Smith ◽  
David R. Doelling

AbstractThe seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earth’s Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1° equal-angle grid are used for the study. The seasonal cycles of absorbed solar radiation (ASR), outgoing longwave radiation (OLR), and net radiation are described by use of principal components for the time variations, for which the corresponding geographic variations are the empirical orthogonal functions. Earth’s surface is partitioned into land and ocean for the analysis. The first principal component describes more than 95% of the variance in the seasonal cycle of ASR and the net radiation fluxes and nearly 90% of the variance of OLR over land. Because one term can express so much of the variance, principal component analysis is very useful to describe these seasonal cycles. The annual cycles of ASR are about 100 W m−2 over land and ocean, but the amplitudes of OLR are about 27 W m−2 over land and 15 W m−2 over ocean. The magnitude of OLR and its time lag relative to that of ASR are important descriptors of the climate system and are computed for the first principal components. OLR lags ASR by about 26 days over land and 42 days over ocean. The principal components are useful for comparing the observed radiation budget with that computed by a model.


2013 ◽  
Vol 26 (23) ◽  
pp. 9367-9383 ◽  
Author(s):  
Simon F. B. Tett ◽  
Daniel J. Rowlands ◽  
Michael J. Mineter ◽  
Coralia Cartis

A large number of perturbed-physics simulations of version 3 of the Hadley Centre Atmosphere Model (HadAM3) were compared with the Clouds and the Earth's Radiant Energy System (CERES) estimates of outgoing longwave radiation (OLR) and reflected shortwave radiation (RSR) as well as OLR and RSR from the earlier Earth Radiation Budget Experiment (ERBE) estimates. The model configurations were produced from several independent optimization experiments in which four parameters were adjusted. Model–observation uncertainty was estimated by combining uncertainty arising from satellite measurements, observational radiation imbalance, total solar irradiance, radiative forcing, natural aerosol, internal climate variability, and sea surface temperature and that arising from parameters that were not varied. Using an emulator built from 14 001 “slab” model evaluations carried out using the climateprediction.net ensemble, the climate sensitivity for each configuration was estimated. Combining different prior probabilities for model configurations with the likelihood for each configuration and taking account of uncertainty in the emulated climate sensitivity gives, for the HadAM3 model, a 2.5%–97.5% range for climate sensitivity of 2.7–4.2 K if the CERES observations are correct. If the ERBE observations are correct, then they suggest a larger range, for HadAM3, of 2.8–5.6 K. Amplifying the CERES observational covariance estimate by a factor of 20 brings CERES and ERBE estimates into agreement. In this case the climate sensitivity range is 2.7–5.4 K. The results rule out, at the 2.5% level for HadAM3 and several different prior assumptions, climate sensitivities greater than 5.6 K.


2008 ◽  
Vol 8 (2) ◽  
pp. 5563-5627 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.05 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing cloud be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extend be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations in the future within a realistic range, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2011 ◽  
Vol 24 (4) ◽  
pp. 1034-1052 ◽  
Author(s):  
Markus Huber ◽  
Irina Mahlstein ◽  
Martin Wild ◽  
John Fasullo ◽  
Reto Knutti

Abstract The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate sensitivity have been proposed and provide a better quantification of relative probabilities of climate sensitivity within the almost canonical range of 2–4.5 K; however, large uncertainties remain, in particular for the upper bound. Simple indices of spatial radiation patterns are used here to establish a relationship between an observable radiative quantity and the equilibrium climate sensitivity. The indices are computed for the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset and offer a possibility to constrain climate sensitivity by considering radiation patterns in the climate system. High correlations between the indices and climate sensitivity are found, for example, in the cloud radiative forcing of the incoming longwave surface radiation and in the clear-sky component of the incoming surface shortwave flux, the net shortwave surface budget, and the atmospheric shortwave attenuation variable β. The climate sensitivity was estimated from the mean of the indices during the years 1990–99 for the CMIP3 models. The surface radiative flux dataset from the Clouds and the Earth’s Radiant Energy System (CERES) together with its top-of-atmosphere Energy Balanced and Filled equivalent (CERES EBAF) are used as a reference observational dataset, resulting in a best estimate for climate sensitivity of 3.3 K with a likely range of 2.7–4.0 K. A comparison with other satellite and reanalysis datasets show similar likely ranges and best estimates of 1.7–3.8 (3.3 K) [Earth Radiation Budget Experiment (ERBE)], 2.9–3.7 (3.3 K) [International Satellite Cloud Climatology Project radiative surface flux data (ISCCP-FD)], 2.8–4.1 (3.5 K) [NASA’s Modern Era Retrospective-Analysis for Research and Application (MERRA)], 3.0–4.2 (3.6 K) [Japanese 25-yr Reanalysis (JRA-25)], 2.7–3.9 (3.4 K) [European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim)], 3.0–4.0 (3.5 K) [ERA-40], and 3.1–4.7 (3.6 K) for the NCEP reanalysis. For each individual reference dataset, the results suggest that values for the sensitivity below 1.7 K are not likely to be consistent with observed radiation patterns given the structure of current climate models. For the aggregation of the reference datasets, the climate sensitivity is not likely to be below 2.9 K within the framework of this study, whereas values exceeding 4.5 K cannot be excluded from this analysis. While these ranges cannot be interpreted properly in terms of probability, they are consistent with other estimates of climate sensitivity and reaffirm that the current climatology provides a strong constraint on the lower bound of climate sensitivity even in a set of structurally different models.


2004 ◽  
Vol 43 (12) ◽  
pp. 1818-1833 ◽  
Author(s):  
Maria João Costa ◽  
Vincenzo Levizzani ◽  
Ana Maria Silva

Abstract A method based on the synergistic use of low earth orbit and geostationary earth orbit satellite data for aerosol-type characterization and aerosol optical thickness (AOT: τa) retrieval and monitoring over the ocean is presented in Part I of this paper. The method is now applied to a strong dust outbreak over the Atlantic Ocean in June 1997 and to two other relevant transport events of biomass burning and desert dust aerosol that occurred in 2000 over the Atlantic and Indian Oceans, respectively. The retrievals of the aerosol optical properties are checked against retrievals from sun and sky radiance measurements from the ground-based Aerosol Robotic Network (AERONET). The single-scattering albedo values obtained from AERONET are always within the error bars presented for Global Ozone Monitoring Experiment (GOME) retrievals, resulting in differences lower than 0.041. The retrieved AOT values are compared with the independent space–time-collocated measurements from the AERONET, as well as to the satellite aerosol official products of the Polarization and Directionality of the Earth Reflectances (POLDER) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A first estimate of the AOT accuracy derived from comparisons with AERONET data leads to ±0.02 ± 0.22τa when all AOT values are retained or to ±0.02 ± 0.16τa for aerosol transport events (AOT &gt; 0.4). The upwelling flux at the top of the atmosphere (TOA) was computed with radiative transfer calculations and used to estimate the TOA direct shortwave aerosol radiative forcing; a comparison with space–time-collocated measurements from the Clouds and the Earth's Radiant Energy System (CERES) TOA flux product was also done. It was found that more than 90% of the values differ from CERES fluxes by less than ±15%.


2020 ◽  
Author(s):  
Amit kumar Sharma ◽  
Dilip Ganguly

&lt;p&gt; Atmospheric aerosols emitted from both natural and anthropogenic sources play a crucial role in the Earth&amp;#8217;s radiation budget and regulating its climate. The mechanisms through which aerosols influence the radiation budget of the Earth is often classified as direct, semi-direct, and indirect effects of aerosols. It is important to understand the perturbation caused in the radiation budget of the Earth due to changing emissions of individual aerosol species and their precursors not only for estimating the responses of the climate system to such perturbations but also to be able to attribute these responses to changes in specific aerosol species and their sources for planning any mitigation or adaptation strategy to any undesirable consequences of climate change caused by aerosols. In the present study we use the Community Atmosphere Model version 5.3 (CAM5.3) to quantify the direct, semi-direct, and indirect aerosol radiative forcing due to changes in the emissions of individual aerosol species or their precursors from the pre-industrial (PI) to present day (PD) period following a new methodology proposed by Ghan et al. (2012) involving additional radiative diagnostics with neglected absorption and scattering of aerosols, whereas absorption and scattering of aerosols for the actual model setup remains unchanged. A series of systematically designed simulations with concentrations of individual aerosol species set to zero are conducted in order to estimate the direct, semi-direct, and indirect aerosol radiative forcing due to the corresponding aerosol species. Our preliminary results shows the global annual mean value of direct Short-Wave radiative forcing (DRF) at TOA due to all aerosols to be around -0.01W/m&lt;sup&gt;2&lt;/sup&gt;, while the Cloud radiative forcing (CRF) to be around -1.5W/m&lt;sup&gt;2&lt;/sup&gt;. The bias in the aerosol radiative forcing estimates as per the old conventional method are almost -0.55W/m&lt;sup&gt;2&lt;/sup&gt; for DRF which is nearly 60 times the DRF estimated using the new approach and 0.23W/m&lt;sup&gt;2&lt;/sup&gt; for CRF which is almost 15.43% of the total CRF at TOA respectively. Interestingly, for the South Asian region, the DRF based on the new approach is found to be positve in almost across south Asia (0.097 W/m&lt;sup&gt;2&lt;/sup&gt;) thereby signifying a trapping of energy in the atmosphere due to aerosols, whereas according to the old conventional method the DRF is estimated to be around -0.59 W/m&lt;sup&gt;2&lt;/sup&gt; signifying a loss of energy in the atmosphere due to aerosols. Similarly a difference of about 1 W/m&lt;sup&gt;2&lt;/sup&gt; is noted in the estimates of CRF as per the new and the old methods of estimating radiative forcing. More results with greater details on the contribution of individual aerosols towards the total aerosol radiative forcing and other important meteorological parameters will be presented.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document