scholarly journals Modern blast furnace ironmaking technology: potentials to meet the demand of high hot metal production and lower energy consumption

10.30544/414 ◽  
2019 ◽  
Vol 25 (2) ◽  
pp. 69-104 ◽  
Author(s):  
Elsayed Mousa

Iron and steel making is one of the most intense energy consuming in the industrial sectors. The intensive utilization of fossil carbon in the ironmaking blast furnace (BF) is related directly to CO2 emission and global warming. Lowering the energy consumption and CO2 emission from BF comes on the top priorities from both economic and environmental aspects. The BF has undergone tremendous modifications and development to increase production and improve the overall efficiency. Both technological development and scientific research drive one another to reach optimum operation conditions, which are very close to the ideal conditions; however, further development is still required to meet the stringent environmental regulations. The present article provides a comprehensive review of recent research and development which were carried out in modern blast furnace to increase the productivity meanwhile reduce the energy consumption and CO2 emission to meet the demand of steel market and the environmental protection. The recent technological and metallurgical improvements in the BF are intensively discussed including: (i) modifications of BF design, top charging and measuring system, (ii) upgrading of conventional top charging burden and alternative agglomerates, (iii) developing of tuyeres injection system and injected materials, and (iv) potentials of waste heat recovery and usage. These topics are reviewed and discussed in some details to elucidate the potential of recent progress in BF technology in saving the energy consumption and lowering CO2 emission. In this paper, the major research and development which have been carried out in ironmaking BF technology are reviewed with an overview of the future prospects.

Author(s):  
Nelson Fumo ◽  
Louay M. Chamra ◽  
Vicente Bortone

Integrated energy systems combine distributed power generation with thermally activated components to use waste heat, improving the overall energy efficiency, and making better use of fuels. Use of solar thermal energy is attractive to improve combined cooling, heating, and power (CCHP) systems performance, particularly during summer time since the cooling load coincides very well with solar energy availability. Limitation of the use of solar systems is mainly related to high first cost and large surface area for solar energy harvesting. Therefore, solar thermal CCHP systems seem to be an alternative to increase the use of solar thermal energy as a means to increase energy systems overall efficiency and reduce greenhouse gases (GHGs) emissions. This study focuses on the use of solar collectors in CCHP systems in order to reduce PEC and emission of CO2 in office buildings. By using a base CCHP system, the energy and economic analysis are presented as the contribution of the solar system from the baseline. For comparison purposes, the analysis is made for the cities of Minneapolis (MN), Chicago (IL), New York (NY), Atlanta (GA), and Fort Worth (TX). Results show that solar thermal CCHP systems can effectively reduce the fuel energy consumption from the boiler. The potential of solar collectors in CCHP systems to reduce PEC and CO2 emission increases with the cooling demand; while the effectiveness of solar collectors to reduce primary energy consumption and CO2 emission, and the ability of the system to pay by itself from fuel savings, decreases with the number of solar collectors.


2019 ◽  
Vol 116 ◽  
pp. 00103 ◽  
Author(s):  
Agnieszka Zając

Still technological development is associated with huge energy consumption, and thus with the increasing use of constantly decreasing fossil fuel resources, the formation of greenhouse effect and an increase in atmospheric pollution with combustion products. In connection with the constant, increasing global energy consumption, including for refrigeration purposes, it is necessary to promote modern, cost-effective technologies that enable energy recovery in sanitary installations. This article discusses the problem of utilization of waste heat from the refrigeration process and presents the possibilities of acquiring this wasted heat and objectives of its use. The article was prepared on the basis of a technical and technological design of a real object in Wroclaw, which is a self-service grocery store.


Author(s):  
Pankaj Musyuni ◽  
Geeta Aggarwal ◽  
Manju Nagpal ◽  
Ramesh K. Goyal

Background: Protecting intellectual property rights are important and particularly pertinent for inventions which are an outcome of rigorous research and development. While the grant of patents is subject to establishing novelty and inventive step, it further indicates the technological development and helpful for researchers working in the same technical domain. The aim of the present research work is to map the existing work through analysis of patent literature, in the field of Coronaviruses (CoV), particularly COVID-19 (2019-nCoV). CoV is a large family of viruses known to cause illness in human and animals, particularly known for causing respiratory infections as evidenced in earlier times such as in MERS i.e. Middle East Respiratory Syndrome; SRS i.e. Severe Acute Respiratory Syndrome. A recently identified novel-coronavirus has known as COVID-19 which has currently caused pandemic situation across the globe. Objective: To expand analysis of patents related to CoV and 2019-nCoV. Evaluation has been conducted by patenting trends of particular strains of identified CoV diseases by present legal status, main concerned countries via earliest priority years and its assignee types and inventors of identified relevant patents. We analyzed the global patent documents to check the scope of claims along with focuses and trends of the published patent documents for the entire CoV family including 2019- nCoV through the present landscape. Methods: To extract the results, Derwent Innovation database is used by a combination of different key-strings. Approximately 3800 patents were obtained and further scrutinized and analyzed. The present write-up also discusses the recent progress of patent applications in a period of the year 2010 to 2020 (present) along with the recent developments in India for the treatment options for CoV and 2019-nCoV. Results: Present analysis showed that key areas of the inventions have been focused on vaccines and diagnostic kits apart from the composition for treatment of CoV. We also observed that no specific vaccine treatments is available for treatment of 2019-nCov, however, developing novel chemical or biological drugs and kits for early diagnosis, prevention and disease management is the primarily governing topic among the patented inventions. The present study also indicates potential research opportunities for the future, particularly to combat 2019-nCoV. Conclusion: The present paper analyzes the existing patents in the field of Coronaviruses and 2019-nCoV and suggests a way forward for the effective contribution in this upcoming research area. From the trend analysis, it was observed an increase in filing of the overall trend of patent families for a period of 2010 to the current year. This multifaceted analysis of identified patent literature provides an understanding of the focuses on present ongoing research and grey area in terms of the trends of technological innovations in disease management in patients with CoV and 2019-nCoV. Further, the findings and outcome of the present study offer insights for the proposed research and innovation opportunities and provide actionable information in order to facilitate policymakers, academia, research driven institutes and also investors to make better decisions regarding programmed steps for research and development for the diagnosis, treatment and taking preventive measures for CoV and 2019-nCoV. The present article also emphasizes on the need for future development and the role of academia and collaboration with industry for speedy research with a rationale.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2408
Author(s):  
Anissa Nurdiawati ◽  
Frauke Urban

Industries account for about 30% of total final energy consumption worldwide and about 20% of global CO2 emissions. While transitions towards renewable energy have occurred in many parts of the world in the energy sectors, the industrial sectors have been lagging behind. Decarbonising the energy-intensive industrial sectors is however important for mitigating emissions leading to climate change. This paper analyses various technological trajectories and key policies for decarbonising energy-intensive industries: steel, mining and minerals, cement, pulp and paper and refinery. Electrification, fuel switching to low carbon fuels together with technological breakthroughs such as fossil-free steel production and CCS are required to bring emissions from energy-intensive industry down to net-zero. A long-term credible carbon price, support for technological development in various parts of the innovation chain, policies for creating markets for low-carbon materials and the right condition for electrification and increased use of biofuels will be essential for a successful transition towards carbon neutrality. The study focuses on Sweden as a reference case, as it is one of the most advanced countries in the decarbonisation of industries. The paper concludes that it may be technically feasible to deep decarbonise energy-intensive industries by 2045, given financial and political support.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Sign in / Sign up

Export Citation Format

Share Document