scholarly journals A Comparative Review Study on the Manufacturing Processes of Composite Grid Structures

10.30544/98 ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 79-88
Author(s):  
A. Fadavian ◽  
A. Davar ◽  
J. E. Jam ◽  
S. H. Taghavian

Filament winding and fiber placement are low-cost, fast, and suitable processes for manufacturing composite grid structures. Resulted structures are high quality products. They have the advantage of carrying heavy structural loads as well as light structural weight. Composite Grid Structures (CGS) are manufactured with varying geometries such as circular (cylindrical and conic) and flat. They are applied in hightech industries including aerospace industry. In this paper, the manufacturing processes of these structures and their various aspects (including winding method, mandrel material and curing method) are reviewed and compared in detail.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


Author(s):  
Z. J. Pei ◽  
Alan Strasbaugh

In order to ensure high quality chips with high yield, the base material, semiconductor wafers (over 90% are silicon), must have superior quality. It is critically important to develop new manufacturing processes that allow silicon wafer manufacturers to produce high quality wafers at a reasonably low cost. A newly patented technology—fine grinding of etched silicon wafers—has great potential to manufacture very flat silicon wafers more cost-effectively. This paper presents an investigation of grinding marks in fine grinding. The investigation covers (1) nature of grinding marks, (2) factors that have effects on grinding marks, and (3) approaches to reduce grinding marks. Varying chuck speed during grinding operation is shown to be a very effective approach to reduce grinding marks. Conclusions from this study have direct impacts to the silicon wafer industry.


2000 ◽  
Vol 11 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Robert J. Vokurka ◽  
Rhonda R. Lummus

In today's competitive environment, markets are becoming more international, dynamic, and customer‐driven. Customers are demanding more variety, better quality and service, including both reliability and faster delivery. Technological developments are occurring at a faster pace, resulting in new product innovations and improvements in manufacturing processes. The resulting competitive environment requires low cost, high quality products in increasing varieties. These changes have instigated changes in business and manufacturing strategies.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 948
Author(s):  
Ricard Boqué ◽  
Barbara Giussani

In order to obtain high-quality products and gain a competitive advantage, food producers seek improved manufacturing processes, particularly when physicochemical and sensory properties add significant value to the product [...]


2021 ◽  
Vol 640 (4) ◽  
pp. 042014
Author(s):  
E N Turin ◽  
A N Susskiy ◽  
R S Stukalov ◽  
M V Shestopalov ◽  
E L Turina ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Wenyuan Zhang ◽  
Lang He ◽  
Yuanchao Li ◽  
Dongyan Tang ◽  
Xin Li ◽  
...  

All-air-processed perovskite solar cells (PSCs) have attracted increasing attention due to low cost and simplified manufacturing processes. At present, to fabricate efficient and stable PSCs in the air is expected....


Sign in / Sign up

Export Citation Format

Share Document