scholarly journals Stabilization of Expansive Soil Using Biomedical Waste Incinerator Ash

Author(s):  
Asefachew Belete Tseganeh ◽  
Henok Fikre Geberegziabher ◽  
Ayele Tesema Chala

Expansive soils undergo high volume change due to cyclic swelling and shrinkage behavior during the wet and dry seasons. Thus, such problematic soils should be completely avoided or properly treated when encountered as subgrade materials. In the present study, the biomedical waste incinerator ash and lime combination was proposed to stabilize expansive soil. Particle size analysis, Atterberg limits, free-swell, compaction, unconfined compression strength, and California bearing ratio tests were conducted on the natural soil and blended with 3%, 5%, 7%, 9%, and 11% biomedical waste incinerator ash (BWIA). The optimum content of BWIA was determined based on the free-swell test results. To further investigate the relative effectiveness of the stabilizer, 2% and 3% lime were also added to the optimum soil-BWIA mixture and UCS and CBR tests were also conducted. In addition, scanning electron microscopy (SEM) tests for representative stabilized samples were also conducted to examine the changes in microfabrics and structural arrangements due to bonding. The addition of BWIA has a promising effect on the index properties and strength of the expansive soil. The strength of the expansive soil significantly increased when it was blended with the optimum content of BWIA amended by 2% and 3% lime.

2020 ◽  
Vol 15 (1) ◽  
pp. 53
Author(s):  
Manal O. Suliman ◽  
Abdulrazzaq Jawish Alkherret

Many researchers have been interested in studying the effect of adding local natural materials or construction waste on the properties of poor subgrade soil. However, changes in size and strength of expansive soils can cause extensive damage to the geotechnical infrastructure. This damage is often repeatable and latent in the long term, and is a critical issue in highway subgrade engineering. This paper examines the effect of adding both Fine Silica Sand (FSS) and Granite Cutting Powder Waste (GPW) materials on the welling characteristics of expansive soils. Atterberg limits, free swell index, and rate of swell of the mixtures were used as a key to assess properties of a group of expansive soil samples after adding different percentages of the mentioned materials. The rates of additions were 10%, 20%, 30%, 40%, 50%, 60 and 70% of the weight of the soil samples. The test results showed that FSS and GPW significantly affect the expansive soil properties. However, adding 70% of both FSS and GPW reduced the swelling index from 58.3% to 6.6% and from 58.3% to 11% after 7 days of curing, respectively. This study suggests that the Fine Silica Sand and Granite Powder Waste can be used as stabilizers for expansive highly plastic soils.


1998 ◽  
Vol 35 (1) ◽  
pp. 96-114 ◽  
Author(s):  
Fangsheng Shuai ◽  
D G Fredlund

Numerous laboratory swelling tests have been reported for the measurement of swelling pressure and the amount of swell of an expansive soil. These test methods generally involve the use of a conventional one-dimensional oedometer apparatus. Few attempts, however, have been made to formulate a theoretical framework to simulate the testing procedures or to visualize the different stress paths followed when using the various methods. The simulation of the oedometer tests on expansive soils is required to fully understand the prediction of heave. The correct measurement of swelling pressure is required for an accurate prediction of heave. It is further anticipated that some information on unsaturated soils property functions may be approximated from the back-analysis of the data. A theoretical model is proposed to describe the pore-water pressures with time and depth in a specimen as well as the volume changes during various oedometer swell tests. The model is formulated based on equilibrium considerations, constitutive equations for an unsaturated soil, and the continuity requirement for the pore fluid phases. The transient water flow process is coupled with the soil volume change process. The model can be used to describe the volume-change behaviour, pore-water pressure, and vertical total stress development in an unsaturated soil during an oedometer test performed by any one of several test procedures. The model has been put into a finite element formulation using the Galerkin technique. All the parameters required to run the model can be obtained by performing independent, common laboratory tests. The proposed model was used to simulate the results from free-swell, constant-volume, constant water content, and loaded-swell oedometer tests. Computed values of volume change, vertical total stress, and pore-water pressure are in good agreement with measured values.Key words: unsaturated soil, expansive soil, swelling pressure, theoretical simulation, constant-volume oedometer test, free-swell oedometer test, loaded-swell oedometer test.


2019 ◽  
Vol 7 (7) ◽  
pp. 118-124
Author(s):  
Robel Tewelde Mesfun ◽  
Emer Tucay Quezon ◽  
Anteneh Geremew

Unsuitable soil materials along the alignment of road projects have a significant influence on planning, design, construction, and maintenance. Expansive soils are susceptible to considerable volume changes due to seasonal variations and moisture content. Most soils found in Jimma and Ambo Zones composed of plastic clay soil, causing severe damage at the intermittent of pavement sections. This research study conducted laboratory investigation considering combinations of materials blended to stabilize the expansive soil for subgrade construction. An experimental type of study performed which started by collecting specimens. Two clayey soil specimens considered to test the free swell index obtained from a depth of 1.5m to remove the organic impurities. Results indicated the chemical analysis of pumice contained 82.68%, while its physical properties of the test of fineness specific surface and residue on 45 microns showed 3770 cm2/gm and 30%, respectively. As the lime content increased, the CBR strength also increased. But, if the percent content of lime decreased with an increasing pumice content, the CBR value did not show any significant increase. Both the chemical and physical properties satisfied the requirements according to ASTM C-618. Hence, this experiment obtained 7% lime + 3% pumice as an optimum mix ratio to stabilize expansive soils.


2021 ◽  
Vol 12 (2) ◽  
pp. 141-159
Author(s):  
Mulugeta Fentaw ◽  
Esayas Alemayehu ◽  
Anteneh Geremew

Understanding the behavior of expansive soil and adopting the appropriate control measures should be great for civil engineers. Extensive research has been going on to find the solutions associated with problems of expansive soils. There have been many methods available to control the expansiveness of these soils. The removal of expansive soils and replacement with suitable material has been widely practiced worldwide. Reasonable material is available within economic distances; however, suitable materials is not readily an available in urban areas for borrowing, which has to be hauled from a long distance. Instead of borrowing suitable soil from a long distance away, after stabilization with cost effective and readily available industrial and agricultural waste materials, it is economical to use locally available plastic soil. Such wastage products are also used to minimize environmental hazards such as CO2 in the atmosphere to minimize the percentage of industrial products used for stabilization, such as cement. Marble dust (MD), an industrial waste product, Rice husk ash (RHA), agricultural waste products, and cement are industrial products in this present study. The general objective of study was to examine the effects of poor subgrade soil stabilization using the mixture of MD, RHA and cement to enhance sub-standard soil engineering properties to be used as subgrade materials. Moisture content, Atterberg limits, grain size analysis, soil classification, free swell index, basic gravity, compaction (maximum dry density, optimum moisture content) and CBR value test have been calculated in this analysis. The design of the analysis followed by the experimental method of study were adopted, which started with sample selection. A disturbed samples was collected from the pit at a depth of 1.5 m to 2m from ground level in order to avoid the inclusion of organic matter by considering the free swell index value and observation was considered. The chemical analysis of MD and RHA was conducted in laboratory and the main oxides are (SiO2+Al2O3+Fe2O3) were 70.13% for RHA and 42.43% for MD. The RHA chemical properties satisfy the requirement, while MD did not meet the requirement of ASTM C 618. The Gomata Teachers’ Condominium (GTC) soil sample laboratory result have 42.72% plastic index (PI), 85% free swell index and its CBR value of 2.265%. The Millennium Secondary school (MSS) soil sample has a 48.79% PI, 87% free swell index and 2.121% CBR value. Therefore this soil samples are highly expansive were checked before any stabilizations process based on  their plasticity index and CBR value based on standard specification requirement , then stabilization was achieved by stabilization by proposed (0,8MD,6MD+2C,4MD+4C,2MD+6C,8C,6MD+2RHA, 4MD+4RHA, 2MD+6RHA,8RHA,6RHA+2C,4RHA+4C,2RHA+6C,2MD+2RHA+4C,4MD+2RHA+2C, 2MD+4RHA+2C) proportion. Then LL, PI, OMC, and CBR decreased as the cement ratio increased, while PL, MDD and CBR value increases instead of MD and RHA increases, however, as MD and RHA increase, the quantity of cement decreases. The laboratory outcome was compared with the requirement of Ethiopian road authority standard, ASTM and AASHTO. Based on this study all mixing stabilizers (MD-cement, RHA-cement, MD-RHA, MD-RHA-cement) and 8% of RHA and cement fulfill the ERA standard specification requirements for its CBR swell value. However, 8% of marble dust alone does not fulfill the Ethiopia road authority requirements for CBR swell. The MD and RHA standalone does not improving some of the engineering properties of soil samples used for subgrade construction. However, they mixed with different percentages of cement can effectively stabilizer for this expansive soil for road sub-grade construction.


Author(s):  
Hariprasad Reddy Ponnapureddy ◽  
Rama Vara Prasad Chavali ◽  
Rakesh J Pillai

This paper aims at establishing the influence of acidic and alkalinepore fluids on the swell behaviour of an expansive soil. Aseries of laboratory one dimensional free swell tests were performedto study the behaviour of soil in acidic and alkaline environment.Three different concentrations of sodium hydroxide andsulphuric acid solutions were used as pore fluids to understandthe influence of variable concentrations on the swell behaviourof soil. Results showed that, the swelling of soil that interactedwith sodium hydroxide solution initially increased at lower concentrationand then decreased with increase in concentration.In contrast, the swelling initially decreased at lower concentrationof sulphuric acid and then increased with increase inconcentration of solution. The complexity in the swell behaviourof contaminated soil was assessed by thoroughly investigatingthe mineralogy and microstructure alterations by carrying outX-ray diffraction analysis, Scanning electron microscopy andEnergy dispersive analysis of X-ray at the end of interaction.


Author(s):  
Nasser A. A. Radwan ◽  
Khaled M. M. Bahloul

The aim of this research is to investigate experimentally the relationship between free swell, plasticity index of expansive soil found in greater Cairo City Suburbs, Egypt with swelling pressure of mentioned soil. Predicting Swelling Pressure of any soil is a time consuming and expensive test in comparison to determining plasticity index and free swell which are simple, fast and economic tests. In present research six samples of expansive soil were collected from different locations of study area. The method uses single variable and multiple variable regression analysis using Microsoft excel software.


Author(s):  
Richard Shumbusho ◽  
Gurmel S. Ghataora ◽  
Michael P.N. Burrow ◽  
Digne R. Rwabuhungu

This study was conducted to investigate the potential benefits of using geogrids in mitigating pavement defects notably roughness and longitudinal cracking on pavements built over expansive soils. The seasonal changes of expansive soils (periodic wetting and drying) cause detrimental effects on the overlying road pavements. Such detrimental behavior of expansive soils was simulated in a controlled laboratory environment through allowing cyclic wetting and drying of an expansive soil underlying a pavement section. The shrink/swell effects of the expansive soil subgrade were examined through monitoring its change in moisture, and measuring deformation of overlying pavement section. The experimental study suggested that a geogrid layer in a reinforced pavement section can reduce surface differential shrinking and swelling deformation resulting from underlying expansive soils by a factor of 2 and 3 respectively in comparison to unreinforced section. Given that an oedometer test which is typically used to predict swelling potential of expansive soils is known to overpredict in-situ soil swell, experimental program also investigated quantitatively the extent to which the oedometer can overestimate swelling behaviour of the real-field scenarios. It was found that oedometer percent swell can overpredict in-situ swelling behaviour of the expansive soil by a factor ranging between 2 and 10 depending upon the period over which the in-situ expansive soil has been in contact with water.


2019 ◽  
Vol 19 (1) ◽  
pp. 21-30
Author(s):  
Arifudin Nur ◽  
Suryo Hapsoro Tri Utomo ◽  
M. Zudhy Irawan

Abstract Expansive soils have high swelling and shrinkage potentials, which may cause damage to road structures. Therefore, stabilization is required. One method of stabilization is to use lime and spent catalysts with the aim of increasing carrying capacity and reducing swelling. Spent catalyst is a petroleum processing waste and classified as pozzolanic material. The addition of lime and spent catalysts can increase the CBR value and reduce swelling of soils. The results of this study indicate that the maximum increase in soaked CBR and unsoaked CBR values occurred in soil mixtures with optimum lime content and 12% spent catalyst with 7 days of curing. While the soil mixture with optimum lime content and 12% spent catalyst, with 7 days of curing, is the best mixture that produces soaked CBR value of 49.67%, swelling of 0.15%, and plasticity index value of 11.97%, so the soil meets the requirements to be used as pavement subgrade. Keywords: expansive soil, stabilization, road structure, subgrade, road pavement  Abstrak Tanah ekspansif memiliki potensi pengembangan dan penyusutan yang tinggi, sehingga dapat menyebabkan kerusakan struktur jalan. Oleh sebab itu, perlu dilakukan stabilisasi. Salah satu metode stabilisasi adalah menggunakan kapur dan spent catalyst dengan tujuan meningkatkan kapasitas dukung dan menurunkan swelling. Spent catalyst merupakan limbah pengolahan minyak bumi dan termasuk bahan pozzolan. Penam-bahan kapur dan spent catalyst mampu meningkatkan nilai CBR dan mereduksi swelling. Hasil studi ini menunjukkan bahwa peningkatan maksimum nilai CBR soaked maupun CBR unsoaked terjadi pada campuran tanah dengan kadar kapur optimum dan 12% spent catalyst dengan peraman 7 hari. Sedangkan campuran tanah dengan kadar kapur optimum dan 12% spent catalyst, dengan peraman 7 hari, merupakan campuran terbaik yang menghasilkan nilai CBR soaked sebesar 49,67%, swelling sebesar 0,15%, dan nilai indeks plastisitas sebesar 11,97%, sehingga tanah memenuhi syarat untuk digunakan sebagai tanah dasar perkerasan jalan. Kata-kata kunci: tanah ekspansif, stabilisasi, struktur jalan, tanah dasar, perkerasan jalan


Sign in / Sign up

Export Citation Format

Share Document