scholarly journals Refractive Index Border Associated with Nonlinear Optical Properties in Superhybrid Transparent TiO2 Nanoparticles-Polymer: Great Potential for Ultrafast Optical Waveguide in Optical Communication

2020 ◽  
Vol 3 (4) ◽  
pp. 282-289
Author(s):  
Hendry Izaac Elim

The excellency of a superhybrid material based TiO2 nanoparticles (NPs) has been improved by the surface modification of the TiO2 with a coupling agent of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane to render them highly compatible with organic monomer mixtures avoiding aggregation. Such TiO2 NPs are then attached with a polymer. The border of linear refractive index of hybrid TiO2 NPs-polymer is enhanced in comparison with that of pure epoxy resin or polymer. Nonlinear refractive index and nonlinear absorption coefficient of hybrid TiO2 NPs-polymer are measured by femtosecond Z-scan technique at 800 nm. This hybrid material has been fabricated and studied to have a great potential for ultrafast optical waveguide in optical communication quantified by the propagation loss of the hybrid TiO2 NPs-polymer optical waveguide in the range of 4.79 to 11.90 dB/cm, which is depending on the volume percent of TiO2 NPs

2001 ◽  
Vol 10 (04) ◽  
pp. 409-414 ◽  
Author(s):  
SUDHIR KUMAR SHARMA

Conducting polymer is a physical mixture of non-conducting polymer with electrically conducting material. Polyaniline is a class of conducting polymers that exists in four different forms depending on protonation and doping of the base. Starting with aniline, polyaniline is synthesized and doped with two different metals namely iron and aluminum separately. Using these films optical waveguides are fabricated. Their characteristics viz. Refractive index, propagation loss, number of modes etc., are studied using prism coupling technique. The results are discussed.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Sandip Madhukar Deshmukh ◽  
Mohaseen S. Tamboli ◽  
Hamid Shaikh ◽  
Santosh B. Babar ◽  
Dipak P. Hiwarale ◽  
...  

In the present work, we have reported a facile and large-scale synthesis of TiO2 nanoparticles (NPs) through urea-assisted thermal decomposition of titanium oxysulphate. We have successfully synthesized TiO2 NPs by using this effective route with different weight ratios of titanium oxysulphate: urea. The structures and properties of TiO2 NPs were confirmed by scanning electron microscope) (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy (UV-vis), and photoluminescence (Pl) techniques. XRD demonstrated that TiO2 NPs holds of anatase crystal phase with crystallizing size 14–19 nm even after heating at 600 °C. TGA, SEM, and TEM images reveal urea’s role, which controls the size, morphology, and aggregation of TiO2 NPs during the thermal decomposition. These TiO2 NPs were employed for photodegradation of Methyl Orange (MO) in the presence of ultraviolet (UV) radiation. An interesting find was that the TiO2 NPs exhibited better photocatalytic activity and excellent recycling stability over several photodegradation cycles. Furthermore, the present method has a great perspective to be used as an efficient method for large-scale synthesis of TiO2 NPs.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 115
Author(s):  
Zeinab Ebrahimpour ◽  
Humberto Cabrera ◽  
Fahimeh Ahmadi ◽  
Asghar Asgari ◽  
Joseph Niemela

In this work, time-resolved thermal lens and beam deflection methods were applied to determine the thermo-optical properties of Er3+ doped sulfophosphate glass in which different concentrations of Titanium dioxide (TiO2) nanoparticles (NPs) were embedded. Thermal diffusivity (D), thermal conductivity (κ), and the temperature coefficient of the optical path length (ds/dT) were determined as a function of NPs concentrations. Moreover, the growth of TiO2 NPs inside the amorphous glass matrix was evidenced by Transmission Electron Microscopy (TEM) images as well as through optical effects such as refractive index change of the glass. The outcomes indicated relatively high values for D and κ as well as a low ds/dT as required for most optical components used for laser media. The addition of TiO2 NPs with concentration of dopants up to 0.6 mol% improved the optical properties of the glass samples but did not affect its thermal properties. The results indicate that the enhanced optical and thermal performance of the proposed co-doped glass fits the quality standards for materials used in photonic devices.


2007 ◽  
Vol 21 (30) ◽  
pp. 5075-5089 ◽  
Author(s):  
HALA M. KHALIL ◽  
MOHAMMED M. SHABAT ◽  
SOFYAN A. TAYA ◽  
MAZEN M. ABADLA

In this work, we present an extensive theoretical analysis of nonlinear optical waveguide sensor. The waveguide under consideration consists of a thin dielectrica film surrounded by a self-focused nonlinear cladding and a linear substrate. The nonlinearity of the cladding is considered to be of Kerr-type. Both cases, when the effective refractive index is greater and when it is smaller than the index of the guiding layer, are discussed. The sensitivity of the effective refractive index to any change in the cladding index in evanescent optical waveguide sensor is derived for TM modes. Closed form analytical expressions and normalized charts are given to provide the conditions required for the sensor to exhibit its maximum sensitivity. The results are compared with those of the well-known linear evanescent waveguide sensors.


2019 ◽  
Vol 13 (3) ◽  
pp. 234-240
Author(s):  
Elnaz Moslehifard ◽  
Mahmood Robati Anaraki ◽  
Saeed Shirkavand

Background. The current study evaluated the compressive, flexural and impact strengths of heat-cured acrylic resins reinforced by TiO2 nanoparticles (NPs). Methods. TiO2 NPs were provided and characterized using scanning electron microscopy (SEM) to determine their morphology and crystalline structure. For three mechanical tests, 12 acrylic resin groups (n=9), totaling 108 specimens, were prepared using a special mold for each test, with TiO2 nanoparticle contents of 0, 0.5, 1 or 2 wt% in different groups. After curing, the compressive, flexural and impact strengths of the specimens were examined according to ISO 1567. Results. In the SEM and XRD study of TiO2 NPs, anatase was identified as the major crystalline phase followed by rutile (average particle size: 20.4 nm). SEM images showed that the nanocomposite with 1 wt% NPs had a more homogenized blend. 1 wt% TiO2 nanocomposite exhibited a higher, but non-significant, impact strength compared to the controls. ANOVA showed significant differences in the impact and flexural strengths between nanocomposites with various contents of TiO2 NPs. Conclusion. The nanocomposite with 1 wt% TiO2 NPs exhibited fewer micro-pores and micro-cracks in the SEM cross-sections. A non-significant increase was also observed in the impact strength with TiO2 NPs at 1 wt%. Further increase in TiO2 NPs decreased both the impact and flexural strengths. The compressive strength of the heat-cured acrylic resin was not affected by the incorporation of NPs.


2021 ◽  
Author(s):  
Liu Lu ◽  
Tiantian Zhao ◽  
Lei Chen ◽  
Chenyang Wang ◽  
Zhiqiang Zhou ◽  
...  

Abstract We demonstrate the enhancement of both excitation and transmission efficiency of the propagated surface plasmon (SP) of Ag nanowire (Ag NW) in hybrid Ag-MoS2 structure by contrasting the SP propagation of the same Ag NW on different substrates including silicon substrate, monolayer MoS2, or partially overlapping the Ag NW on MoS2 flake. The simulation results indicate that with the assistance of MoS2, the leaky radiation of the hybrid plasmonic modes of the H1 and H2 can be prominently suppressed by the high refractive index dielectric layer of the MoS2, which provides an optical barrier blocking the leaky radiation, resulting in the reduced propagation loss. Our work provides a feasible and effective method to enhance the SP propagation length.


Sign in / Sign up

Export Citation Format

Share Document