Replication of Carbonate Reservoir Pores at the Original Size Using 3D Printing

Author(s):  
Sergey Ishutov ◽  
◽  
Kevin Hodder ◽  
Rick Chalaturnyk ◽  
Gonzalo Zambrano-Narvaez ◽  
...  

Three-dimensional (3D) printing is a powerful tool that enables visualization, replication, and experimentation with natural porous rocks. Over 100 years, natural rocks have been a focus of studies on how fluids such as hydrocarbons, greenhouse gases, and water flow through their porous systems. Scale and resolution are among the most challenging factors for current 3D printing methods when attempting to replicate the pore architecture of natural porous media. Most 3D printing techniques have resolution restraints during fabrication that makes feature reproduction at the 1:1 scale almost impossible. A new developing technology that uses two-photon lithography and ultraviolet (UV) light curable resin allows for nanometer features to be 3D printed. However, the main challenge of this 3D printing method is the small size of the resulting model (less than 20 mm in each direction). This technical note presents a detailed workflow on how to fabricate a carbonate rock replica at the micron scale. To test this workflow, a pore network was obtained from tomographic data of a reservoir rock core located in Mexico (1 mm in diameter and 2 mm in height) and was 3D printed at the original size. This replica was subjected to tomographic and scanning electron imaging to verify the accuracy of pore geometry. Incorporating lithographic printing into novel rock experiments that concern multiscale, multiphysics models of fluid flow and deformation open an unprecedented opportunity for more controlled prediction of reservoir fluid dynamics, carbon capture and storage, and continuum mechanics.

2021 ◽  
Vol 105 (1) ◽  
pp. 431-440
Author(s):  
Pavel Šafl ◽  
Jana Zimáková ◽  
Tomáš Binar

The aim of this work is to study the climatic influences on 3D printed materials. This study focuses on the HIPS material, which was chosen as the starting material for further studies. The material in the field of 3D printing is known for its rapid photooxidation, which results in the formation of cracks in the final product. A climatic chamber was used for degradation, in which UV light, heat and increased humidity were applied to the material. The degree of degradation was then checked by tensile test and electron microscope.


Author(s):  
Rytis Mitkus ◽  
Andreas Pierou ◽  
Julia Feder ◽  
Michael Sinapius

Abstract The present study demonstrates the manufacturing and characterization of 0-3 piezoelectric composites made of up to 10 vol% of Lead Zirconate Titanate (PZT) particles and photopolymer resins. The tape-casting method was used to investigate the curing behavior, PZT loading limitations and the overall feasibility of the suspensions for 3D printing. Piezoelectric composites were 3D printed with a commercial DLP type 3D printer. As a starting point, the maximum possible vol% loading of PZT ceramic for each photopolymer resin was investigated. Five different commercially available photopolymer resins from Formlabs (Somerville, MA, US) were used. It was found that the addition of PZT particles to the photopolymer increases the time required for the photopolymer to solidify because PZT particles scatter the UV light. The approximate solidification time of each composition was measured, followed by viscosity measurements. SEM imaging of the composites showed good particle dispersion with minimum agglomeration, low particle sedimentation, but the weak bond between PZT particles and the photopolymers. Best performed material composition with 10 vol% of PZT was used for 3D printing. An attempt to shorten exposure time during printing was done by adding photoinitiator TPO. Suspensions with and without TPO were 3D printed and compared.


2019 ◽  
Vol 3 (2) ◽  
pp. 43 ◽  
Author(s):  
Eda Baran ◽  
H. Erbil

Polylactic acid (PLA) filaments are very popular as a thermoplastic source used in the 3D printing field by the “Fused Deposition Modeling” method in the last decade. The PLA market is expected to reach 5.2 billion US dollars in 2020 for all of its industrial uses. On the other hand, 3D printing is an expanding technology that has a large economic potential in many industries where PLA is one of the main choices as the source polymer due to its ease of printing, environmentally friendly nature, glossiness and multicolor appearance properties. In this review, we first reported the chemical structure, production methods, general properties, and present market of the PLA. Then, the chemical modification possibilities of PLA and its use in 3D printers, present drawbacks, and the surface modification methods of PLA polymers in many different fields were discussed. Specifically, the 3D printing method where the PLA filaments are used in the extrusion-based 3D printing technologies is reviewed in this article. Many methods have been proposed for the permanent surface modifications of the PLA where covalent attachments were formed such as alkaline surface hydrolysis, atom transfer polymerization, photografting by UV light, plasma treatment, and chemical reactions after plasma treatment. Some of these methods can be applied for surface modifications of PLA objects obtained by 3D printing for better performance in biomedical uses and other fields. Some recent publications reporting the surface modification of 3D printed PLA objects were also discussed.


2015 ◽  
Vol 123 (4) ◽  
pp. 1070-1076 ◽  
Author(s):  
Bruce L. Tai ◽  
Deborah Rooney ◽  
Francesca Stephenson ◽  
Peng-Siang Liao ◽  
Oren Sagher ◽  
...  

In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.


2017 ◽  
Vol 19 (4) ◽  
pp. 490-494 ◽  
Author(s):  
Melissa LoPresti ◽  
Bradley Daniels ◽  
Edward P. Buchanan ◽  
Laura Monson ◽  
Sandi Lam

Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.


2017 ◽  
Vol 8 (29) ◽  
pp. 4199-4206 ◽  
Author(s):  
Dylan G. Karis ◽  
Robert J. Ono ◽  
Musan Zhang ◽  
Ankit Vora ◽  
Duane Storti ◽  
...  

Triple-stimuli responsive hydrogel can be 3D printed and cross-linked in the presence of a photoradical generator and 365 nm UV light.


2021 ◽  
Author(s):  
Alan Kennedy ◽  
Mark Ballentine ◽  
Andrew McQueen ◽  
Christopher Griggs ◽  
Arit Das ◽  
...  

This Dredging Operations Environmental Research (DOER) technical note disseminates novel methods to monitor and reduce contaminant mobility and bioavailability in water, sediments, and soils. These method advancements are enabled by additive manufacturing (i.e., three-dimensional [3D] printing) to deploy and retrieve materials that adsorb contaminants that are traditionally applied as unbound powders. Examples of sorbents added as amendments for remediation of contaminated sediments include activated carbon, biochar, biopolymers, zeolite, and sand caps. Figure 1 provides examples of sorbent and photocatalytic particles successfully compounded and 3D printed using polylactic acid as a binder. Additional adsorptive materials may be applicable and photocatalytic materials (Friedmann et al. 2019) may be applied to degrade contaminants of concern into less hazardous forms. This technical note further describes opportunities for U.S. Army Corps of Engineers (USACE) project managers and the water and sediment resource management community to apply 3D printing of polymers containing adsorptive filler materials as a prototyping tool and as an on-site, on-demand manufacturing capability to remediate and monitor contaminants in the environment. This research was funded by DOER project 19-13, titled “3D Printed Design for Remediation and Monitoring of Dredged Material.”


2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Geunho Choi ◽  
Hyung Joon Cha

Abstract Background In recent years, three-dimensional (3D) printing has begun to be widely used in tissue engineering. Natural biomaterials have been employed to overcome the limitations of synthetic polymers. However, their low mechanical strength and poor printability are major disadvantages. Photocrosslinking is the most promising fabrication strategy because it is non-invasive and easy to control light intensity and exposure. In this article, developments of photocrosslinkable natural biomaterials in the field of 3D printing are reviewed. Main body Photocrosslinkable biomaterials can be broadly classified into materials that use ultraviolet (UV) and visible lights. Many natural biomaterials such as gelatin, hydroxyapatite, silk fibroin, and pectin have been modified through acrylation, crosslinked by 365 nm UV light, and 3D printed. Riboflavin could also be used to crosslink and print collagen or decellularized extracellular matrix (dECM). In the case of silk-like aneroin and modified gelatin, crosslinking is possible by forming a dityrosine bond using 452 nm visible light. Conclusion Despite the tremendous researches on the developments of photocrosslinkable 3D printing natural biomaterials, further efforts are necessary to develop source biomaterials with excellent biological functions and sufficient mechanical integrity.


2021 ◽  
pp. 002199832110447
Author(s):  
Deepa Kodali ◽  
Chibu O Umerah ◽  
Mohanad O Idrees ◽  
S Jeelani ◽  
Vijaya K Rangari

Owing to its robustness, ability to achieve complex geometries, and ease of use, 3D printing has become one of the noteworthy applications in the field of engineering. Polycarbonate has become a thermoplastic of interest due to its excellent mechanical and optical properties. Especially when infused with nanosilica, polycarbonate becomes a potential candidate for 3D printing with enhanced properties. Polycarbonate nanocomposite filaments infused with AEROSIL (nanosilica) have been melt extruded with various filler loadings of 0.5, 1, and 3 wt% and are then 3D printed. The thermal analysis of the filaments has shown that thermal stability of the filaments increases with increase in filler loading. Tensile tests have shown that addition of nanosilica have enhanced the mechanical properties of the filaments as well as 3D printed films. The addition of silica in low concentrations exhibit higher transmittance of UV light, as silica restricts the mobility of polycarbonate. Despite 3D printing causing voids in bulk materials, silica at low concentration (0.5 and 1 wt%) can improve the mechanical and optical properties. These improvements are promising for applications in thin film interfaces and the automotive industry.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Sign in / Sign up

Export Citation Format

Share Document