SIDE FAULT MAPPING ENABLED BY 2D TRANSVERSE INVERSION ON NEW DEEP DIRECTIONAL RESISTIVITY MEASUREMENTS

2021 ◽  
Author(s):  
Michael Thiel ◽  
◽  
Haifeng Wang ◽  
Dzevat Omeragic ◽  
Jean-Michel Denichou ◽  
...  

Faulting is one type of structural trap for hydrocarbon reservoirs. With more and more fields moving toward the brownfield or mature operations stage of life, the opportunity to target bypassed or attic oil in the vicinity of bounding fault(s) is becoming more and more attractive to operators. However, without an effective logging-while-drilling (LWD) tool to locate and map a fault parallel to the well trajectory, it has been challenging and potentially high risk to optimally place a well to drain oil reserves near the fault. Operators often plan these horizontal wells at a significant distance away from the mapped fault position to avoid impacts to the well construction and production of the well. Often, the interpreted fault position, based on seismic data, can have significant lateral uncertainty, and uncertainties attached to standard well survey measurements make it challenging to place the well near the fault. This often results in the wells being placed much farther from the fault than expected, which is not optimal for maximizing recovery. In other cases, due to uncertainty in the location of the fault, the wells would accidentally penetrate the side faults and cause drilling and other issues. Conventional remote boundary detection LWD tools do not assist with locating the fault position, as they only detect formation boundaries above or below the trajectory and not to the side. In this paper, the authors propose a novel approach for mapping features like a fault parallel to the well trajectory, which was previously impossible to map accurately. This new approach utilizes a new class of deep directional resistivity measurements acquired by a reservoir mapping-while-drilling tool. The deep directional resistivity measurements are input to a newly devised inversion algorithm, resulting in high-resolution reservoir mapping on the transverse plane, which is perpendicular to the well path. These new measurements have a strong sensitivity to resistivity in contrast to the sides of the wellbore, making them suitable for side fault detection. The new inversion in the transverse plane is not limited to detecting a side fault; it can also map any feature on the transverse plane to the well path, which further broadens the application of this technology. Using the deep directional resistivity data acquired from a horizontal ultra-ERD well recently drilled in the Wandoo Field offshore Western Australia, the authors tested this approach against the well results and existing control wells. Excellent mapping of the main side fault up to 30 m to the side of the well was achieved with the new approach. Furthermore, the inversion reveals other interesting features like lateral formation thickness variations and the casing of a nearby well. In addition, the methodology of utilizing this new approach for guiding geosteering parallel to side fault in real time is elaborated, and the future applications are discussed.

2019 ◽  
Author(s):  
Antoine Maruani ◽  
Peter A. Szijj ◽  
Calise Bahou ◽  
João C. F. Nogueira ◽  
Stephen Caddick ◽  
...  

<p>Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.</p><p>Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.</p>


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Karin Wildi ◽  
Samantha Livingstone ◽  
Chiara Palmieri ◽  
Gianluigi LiBassi ◽  
Jacky Suen ◽  
...  

AbstractThe acute respiratory distress syndrome (ARDS) is a severe lung disorder with a high morbidity and mortality which affects all age groups. Despite active research with intense, ongoing attempts in developing pharmacological agents to treat ARDS, its mortality rate remains unaltered high and treatment is still only supportive. Over the years, there have been many attempts to identify meaningful subgroups likely to react differently to treatment among the heterogenous ARDS population, most of them unsuccessful. Only recently, analysis of large ARDS cohorts from randomized controlled trials have identified the presence of distinct biological subphenotypes among ARDS patients: a hypoinflammatory (or uninflamed; named P1) and a hyperinflammatory (or reactive; named P2) subphenotype have been proposed and corroborated with existing retrospective data. The hyperinflammatory subphenotyope was clearly associated with shock state, metabolic acidosis, and worse clinical outcomes. Core features of the respective subphenotypes were identified consistently in all assessed cohorts, independently of the studied population, the geographical location, the study design, or the analysis method. Additionally and clinically even more relevant treatment efficacies, as assessed retrospectively, appeared to be highly dependent on the respective subphenotype. This discovery launches a promising new approach to targeted medicine in ARDS. Even though it is now widely accepted that each ARDS subphenotype has distinct functional, biological, and mechanistic differences, there are crucial gaps in our knowledge, hindering the translation to bedside application. First of all, the underlying driving biological factors are still largely unknown, and secondly, there is currently no option for fast and easy identification of ARDS subphenotypes. This narrative review aims to summarize the evidence in biological subphenotyping in ARDS and tries to point out the current issues that will need addressing before translation of biological subohenotypes into clinical practice will be possible.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2021 ◽  
pp. 209653112098296
Author(s):  
Yan Tang

Purpose: This study explores a novel approach to compiling life-oriented moral textbooks for elementary schools in China, specifically focusing on Morality and Law. Design/Approach/Methods: Adopting Aristotle’s Poetics as its theoretical perspective, this study illustrates and analyzes the mimetic approach used in compiling the life-oriented moral education textbook, Morality and Law. Findings: The mimetic approach involves imitating children's real activities, thoughts, and feelings in textbooks. The mimetic approach to compiling life-oriented moral textbooks comprises three strategies: constructing children's life events as building blocks for textbook compilation, designing an intricate textual device exposing the wholeness of children's life actions, and designing inward learning activities leading to children's inner worlds. Originality/Value: From the perspective of Aristotle's Poetics, the approach to compilation in Morality and Law can be defined as mimetic. And the compilation activity in the life-oriented moral education textbook also can be described as a processes of mimesis. So this article presents a new approach to compile moral education textbooks, and  an innovative way to understand the nature of one compiling activity.


2020 ◽  
Vol 22 (1) ◽  
pp. 279
Author(s):  
Andrzej Kuczumow ◽  
Renata Chałas ◽  
Jakub Nowak ◽  
Wojciech Smułek ◽  
Maciej Jarzębski

A series of linear profiles of the elements of the enamel in human molar teeth were made with the use of an electron microprobe and a Raman microscope. It is postulated that the enamel can be treated as the superposition of variable “overbuilt” enamel on the stable “core” enamel at the macro-, micro- and nanoscale level. The excessive values characterize the “overbuilt enamel”. All the profiles of excessive parameters along the enamel thickness from the enamel surface to the dentin enamel junction (DEJ) can be approximated very precisely with the use of exponential functions, where Ca, P, Cl and F spatial profiles are decaying while Mg, Na, K and CO32− ones are growing distributions. The “overbuilt” apatite formed on the boundary with DEJ, enriched in Na, Mg, OH and carbonates, reacts continuously with Ca, Cl and F, passing into an acid-resistant form of the “overbuilt” enamel. The apparent phases arriving in boundary regions of the “overbuilt enamel” were proposed. Microdiffraction measurements reveal relative variation of energy levels during enamel transformations. Our investigations are the milestones for a further new class of biomaterial and nanomaterial development for biomedical applications.


2007 ◽  
Vol 280-283 ◽  
pp. 1805-1806
Author(s):  
Zhi Jun Cao ◽  
Jia Chen Liu ◽  
Li Bin Liu ◽  
Hao Ye ◽  
Yan Qiu Wei

A new approach was developed for surface modification of metallic surface. By treating nano-zirconia particles and metal surface in different charge state, nano-zirconia particles can be dispersedly inlaid in metal surface owing to electrostatic and nanometer effects. By using this method, metal components of complex shapes, especially those having inside surfaces, might be easily improved, i.e., enhanced surface hardness and wear rate.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


2013 ◽  
Vol 31 (2) ◽  
pp. 191
Author(s):  
Chinnapazham Santhini ◽  
M. Lellis Thivagar

In this paper,we introduce and investigate the notions of Iˆω -closed sets andI ˆω -continuous functions,maximal Iˆω -closed sets and maximal Iˆω -continuous functionsin ideal topological spaces.We also introduce a new class of spaces calledMTˆω -spaces.


1990 ◽  
Vol 206 ◽  
Author(s):  
Tongsan D. Xiao ◽  
Peter R. Strutt ◽  
Kenneth E. Gonsalves

ABSTRACTA new approach has been developed for the synthesis of nanoscale ceramic powder materials from liquid organosilazane precursors. This technique, by exploiting fast kinetic chemical and physical reactions, makes it possible to synthesize significant quantities of material in a relatively short time. In the current approach aerosols of a silazane monomer, (CH3SiHNH)n, (n = 3 or 4), of mol. wt. 280–320, are injected into the beam of a cw industrial CO2 laser to obtain nanoscale ceramic powders. Injection of the aerosol into the laser-beam results in a high-temperature plume. Rapid condensation of the molecular precursor species emerging from the laser plume results in the formation of preceramic polymer particles, with an average diameter of 62 nm. One attractive feature of this process is that 70 wt.% of the liquid precursor is converted into nanoscale powders. Another feature is that only a further 10 wt.% loss occurs during post thermal treatment to form the end-product.


2006 ◽  
Vol 3 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Michael P. H. Stumpf ◽  
Thomas Thorne

Summary It has previously been shown that subnets differ from global networks from which they are sampled for all but a very limited number of theoretical network models. These differences are of qualitative as well as quantitative nature, and the properties of subnets may be very different from the corresponding properties in the true, unobserved network. Here we propose a novel approach which allows us to infer aspects of the true network from incomplete network data in a multi-model inference framework. We develop the basic theoretical framework, including procedures for assessing confidence intervals of our estimates and evaluate the performance of this approach in simulation studies and against subnets drawn from the presently available PIN network data in Saccaromyces cerevisiae. We then illustrate the potential power of this new approach by estimating the number of interactions that will be detectable with present experimental approaches in sfour eukaryotic species, inlcuding humans. Encouragingly, where independent datasets are available we obtain consistent estimates from different partial protein interaction networks. We conclude with a discussion of the scope of this approaches and areas for further research


Sign in / Sign up

Export Citation Format

Share Document