HIDROLOGICAL SIMULATION OF THE RIVERS’ FLOOD CONTROL IN SUBDISTRIC WONOKERTO IN PEKALONGAN REGENCY

Pondasi ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 148
Author(s):  
Bayu Purnama Fitra ◽  
M. Faiqun Niam

ABSTRACT:Flooding problem still become serious problem in subdistrict Wonokerto of Pekalongan regency. There are six rivers that have the potential caused flooding in setelment area. In this research, the researcher wanted to do hydrological simulation at six rivers in Wonokerto. The hydrological simulation is done by calculating the inflow in the river in the form of flood discharge hydrograph design with nakayasu method, and evaluate the capacity of river catchment to flood discharge. Based the results research on six rivers, it is known that the river capacity is not able to accommodate the flood discharge when enters the river. The River water are also known  unable to flow by gravity caused of rob dikes that isolated the river water to flow into the sea, therefore to prevent overflow in the river needs and to prevent overflow and to control the river water level a pumping in rivers.Keywords: Hydrological Simulation, River Flood Control, Storage Evaluation, Pumping

Pondasi ◽  
2020 ◽  
Vol 23 (2) ◽  
pp. 13
Author(s):  
Bayu Purnama Fitra ◽  
Slamet Imam Wahyudi ◽  
Gata Dian Asfari

Abstract: Flooding problem still become serious problem in subdistrict Wonokerto of Pekalongan regency. There are six rivers that have the potential caused flooding in setelment area. In this research, the researcher wanted to do hydrological simulation at six rivers in Wonokerto. The hydrological simulation is done by calculating the inflow in the river in the form of flood discharge hydrograph design with nakayasu method, and evaluate the capacity of river catchment to flood discharge. Based the results research on six rivers, it is known that the river capacity is not able to accommodate the flood discharge when enters the river. The River water are also known  unable to flow by gravity caused of rob dikes that isolated the river water to flow into the sea, therefore to prevent overflow in the river needs and to prevent overflow and to control the river water level a pumping in rivers.Keywords: Hydrological Simulation, River Flood Control, Storage Evaluation, Pumping


2022 ◽  
Vol 955 (1) ◽  
pp. 012011
Author(s):  
A W Biantoro ◽  
S I Wahyudi ◽  
M F Niam ◽  
A G Mahardika

Abstract This research is based on flood conditions that often occur in lowland areas such as Jakarta and Semarang. The problem faced is that the notification and early detection of floods is often late, done manually so that it cannot be anticipated by areas downstream of the river. Therefore, it is very important to be able to develop an IoT-based early warning tool so that floods can be detected early in a fast, real time, and immediately anticipated in the upstream area of the river. This research method uses design methods and experiments carried out in the field and laboratory. This research will present a prototype of the FEDS (Floods Early Detection System), based on the Blynk application. The results showed that the calculation of planned flood discharge with a return period of 2, 5, 10, 25 and 50 years can provide an overview of the ability of an area to face the maximum possible rainfall. The FEDS prototype tool, with the Blynk application, can work well using a microcontroller, ultra sonic sensor, and a rainfall sensor. This system is suitable for use in the community to determine rain conditions and water level conditions used at river water level conditions, for early notification of floods.


2018 ◽  
Vol 73 ◽  
pp. 08029
Author(s):  
Darsono Suseno ◽  
S Suripin ◽  
Budieny Hary ◽  
Cholifatul Afifah Risdiana ◽  
Pujiastuti Ratih ◽  
...  

Rawa Pening is a natural lake as a source of water for Tuntang River which is used for hydropower, raw water source, main irrigation water source in Glapan weir located in Grobogan District, Central Java provinces. Rawa Pening will be developed as location of national and international ecotourism. An Optimal Water Resources Management is required with several studies. This study is the beginning of a series of studies planned to determine the potential of embungs and its utilization as flood control, sediment control of Rawa Pening and for reducing weeds growth.


2018 ◽  
Vol 9 (2) ◽  
pp. 80-85
Author(s):  
Saiful Arfaah ◽  
Iswinarti

The cause of flooding in the watershed area, one of which is caused by the inability of the river profile to accommodate the existing discharge (overflow). This research is intended to examine flood discharge and flood water level profile of Kali Gunting as a first step to determine flood mitigation solutions. Analysis of flood water level profiles using the Hec-Race 4.0 modeling program. With the help of this program, it is expected to be able to accommodate the flow parameters that are so complex. After modeling and knowing the capabilities of each part (cross section), this result will be a technical reference in determining flood mitigation measures. From the results of the study, the analysis of the potential for flooding in the scissor area was obtained as a result of the flood discharge capacity at scissors times = 301.00m3 / dt, and the emission times = 136.66m3 / dt for the 50th return period. The results of the Q50th calculation show that the condition of K. Scissors P0-P36 river water overflows / floods because the flood water level is above the eksesting embankment, while P36-P46 does not overflow / does not flood because the flood water level is below the eksesting dike. K. Panir condition P0-P48 river water overflows / floods because the flood water level is above the eksesting embankment, while P48-P60 does not overflow / does not flood because the flood water level is below the eksesting embankment


2021 ◽  
Author(s):  
Riyan Benny Sukmara ◽  
Nadjadji Anwar ◽  
Ray Shyan Wu ◽  
Ariyaningsih

Flooding issues in Samarinda have high depending on the capacity of Karang Mumus river. Considering the ability of Karang Mumus river to drain off flood discharge, there wore evidence that the constriction of River will drive to flooding issues, especially in rainy/wet season (October-April). The constriction of river happens because many people build nonpermanent houses and building on the river and river banks. Flooding potentially damages to the houses, roads, and other public facilities increasingly. To cope the issue, Government of Samarinda has tried many solutions to overcome the issue by building The Benanga dam and it has been planned to build multiple Dams in Karang Mumus sub-Watershed. This paper aims to analyze the effectiveness of flood control effort using multiple dams scenario in Karang Mumus Sub-Watershed. Analyzing process including hydrology simulation, the relationship between hydrographs and rise of water level simulation in Karang Mumus River. The result of this paper shows water level when peak discharge flows out existing river bank. Analyzing result also shows that flood control scenario is effective to reducing flood discharge until fifty percent compared without existing conditions.


2018 ◽  
Vol 9 (2) ◽  
pp. 80-85
Author(s):  
Saiful Arfaah ◽  
Iswinarti Iswinarti

The cause of flooding in the watershed area, one of which is caused by the inability of the river profile to accommodate the existing discharge (overflow). This research is intended to examine flood discharge and flood water level profile of Kali Gunting as a first step to determine flood mitigation solutions. Analysis of flood water level profiles using the Hec-Race 4.0 modeling program. With the help of this program, it is expected to be able to accommodate the flow parameters that are so complex. After modeling and knowing the capabilities of each part (cross-section), this result will be a technical reference in determining flood mitigation measures. From the results of the study, the analysis of the potential for flooding in the scissor area was obtained as a result of the flood discharge capacity at scissors times = 301.00m3 / dt, and the emission times = 136.66m3 / dt for the 50th return period. The results of the Q50th calculation show that the condition of K. Scissors P0-P36 river water overflows / floods because the flood water level is above the existing embankment, while P36-P46 does not overflow/does not flood because the flood water level is below the existing dike. K. Panir condition P0-P48 river water overflows / floods because the flood water level is above the existing embankment, while P48-P60 does not overflow/does not flood because the flood water level is below the existing embankment


2021 ◽  
Vol 21 (01) ◽  
pp. 11-20
Author(s):  
Christian Cahyono ◽  
Dhanny Susetyo ◽  
Henny Herawati ◽  
Juliastuti

[ID] Permasalahan banjir merupakan permasalahan pengelolaan air yang sering terjadi di Indonesia. Untuk mengatasi permasalahan tersebut dibuat sebuah struktur yaitu waduk yang berfungsi sebagai pengendali banjir. Namun seiring waktu tampungan waduk akan semakin menurun akibat adanya akumulasi sedimen yang terbawa oleh air sungai yang masuk ke dalam waduk dan mengendap. Sehingga diperlukan evaluasi kinerja tampungan waduk tersebut, Permasalahan ini juga dialami oleh Waduk Selorejo yang terletak di Kabupaten Malang. Untuk melakukan evaluasi kinerja tampungan waduk digunakan bantuan perangkat lunak HEC-HMS yang dapat mensimulasikan debit banjir yang masuk beserta elevasi tampungan waduk. Berdasarkan hasil analisis tampungan Waduk Selorejo mampu untuk mengendalikan banjir periode ulang desain awal nya yaitu periode ulang 1000 tahun. Selain itu Waduk Selorejo juga mampu menampung debit banjir Probable Maximum Flood (PMF) apabila muka air awal waduk diturunkan sampai elevasi +605 m. [EN] Flood problem is a water management problem that often occurs in Indonesia. To overcome this problem, a structure is created, namely DAM that functions as a flood controller. However, over time the reservoir storage will decrease due to the accumulation of sediment carried by river water that enters the reservoir. So it is necessary to evaluate the performance of the Rervoir storage. This problem is also experienced by the Selorejo DAM which is located in Malang Regency. To evaluate the performance of the reservoir storage, the help of HEC-HMS software is used which can simulate the incoming flood discharge along with the elevation of the reservoir. Based on the analysis, the Selorejo DAM is able to control the flood of  its initial design period which is the 1000-year return period. In addition, the Selorejo Reservoir is also able to accommodate the Probable Maximum Flood (PMF) flood discharge if the initial water level of the reservoir is lowered to an elevation of +605 m.


2019 ◽  
Vol 4 (1) ◽  
pp. 34-39
Author(s):  
Meliyana Meliyana ◽  
Ichsan Syahputra ◽  
Andhika Mahbengi ◽  
Cut Rahmawati

Krueng Tripa is located in 2 (two) regencies, namely Gayo Lues and Nagan Raya with total area of catchmen area is ± 3,472.95 Km2. The rainfall that affects Krueng Tripa watershed ranges from 493 mm up to 2,197 mm per year. the high rainfall effect on flood events that have caused adverse impacts on the lives of people along the river. The purpose of this study is to estimate peak flood discharge and to propose  flood control management. Analysis flood discharge using with Synthetic Unit Hydrograph (HSS) Soil Conservation Service (SCS).  The rainfall data test show that the rainfall distribution tend to follow the Gumbel, with the rate of design rainfall for 25-year return period to be 154,49 mm/day. Analysis of river flood discharge Krueng Tripa obtained Q25 = 3151,742 m3/s. The control flood recommendation of Krueng Tripa can be accomplished is a dam as flood control structure at the upstream of the river. Result of level pool routing obtained outflow hydrographs  2762,854 m3/s, resulting in a discharge reduction of 388.88 m3/s.


Sign in / Sign up

Export Citation Format

Share Document