The Effects of Anodizing Process on the Corrosion rate and Fatigue Life of Aluminum Alloy 7075-T73

2020 ◽  
Vol 38 (1A) ◽  
pp. 34-42
Author(s):  
Ibrahim M. AL-Sudani ◽  
Samir A. Al-Rabii ◽  
Dhafir S. Al-Fattal

 This research aims to study the effect of using the anodizing process on the corrosion rate, mechanical properties as well as the fatigue life for aluminum alloy (7075-T73), which is one of the most commonly used aluminum alloy in production of aircrafts, vehicles and ships structures. The anodizing process was employed through using sulfuric acid for time (20) min in a salty atmosphere. The mechanical properties and fatigue life of the AA7075-T73 were obtained before and after the anodizing process. All the results were listed in detailed tables and figures for comparison purpose. Generally, these results showed a decrease in corrosion rate by (155.06%) in comparison with untreated, an increase in hardness by (21.54%) and a slight decrease in fatigue life by (7.7%) due to anodizing for a time of 20 min at the stress level of (σa = 491.10 MPa). It was concluded that this technique could be applied on other aluminum alloys in order to know the magnitude of change in the mechanical characteristics and their fatigue life.

2021 ◽  
Vol 901 ◽  
pp. 219-225
Author(s):  
Elena V. Torskaya ◽  
Alexey M. Mezrin

Mechanical properties of surface layers of aluminum alloys before and after friction tests are studied by nanoindentation. The influence of the composition of the alloys on these properties is analyzed. It is obtained that as a result of wear and tear, relatively compliant layer is formed on the surface of one of the alloys. Another sample demonstrates relatively rigid film at the surface of the friction path. Conclusions about different mechanisms of the wear and tear of alloys are made based on the analysis.


2019 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
Mahmoud Alasad ◽  
Mohamad Yahya Nefawy

The aluminum alloys of the 7xxx series consist of Al with Zn mainly, Mg and Cu. 7xxx aluminum alloys has high mechanical properties making it distinct from other aluminum alloys. In this paper, we examine the effect of adding Nickel and heat treatments on the microstructure and hardness of the 7075 aluminum alloy. Were we added different percentages of nickel [0.1, 0.5, 1] wt% to 7075 Aluminum alloy, and applied various heat treatments (artificial aging T6 and Retrogression and re-aging RRA) on the 7075 alloys that Containing nickel. By applying RRA treatment, we obtained better results than the results obtained by applying T6 treatment, and we obtained the high values of hardness and a smoother microstructure for the studied alloys by the addition of (0.5 wt%) nickel to alloy 7075.


2021 ◽  
Vol 40 (1) ◽  
pp. 56-62
Author(s):  
M. Abdullahi ◽  
L.S. Kuburi ◽  
P.T. Zubairu ◽  
U. Jabo ◽  
A.A. Yahaya ◽  
...  

This paper, studied the effect of heat treatment and anodization on corrosion resistance of aluminum alloy 7075 (AA7075), with a view to improving its corrosion resistance. Microstructure and micro hardness of the anodic film of the samples were studied with the aid of optical metallurgical microscope and automated micro hardness testing machine. Linear polarization methods were used to assess the corrosion behaviour of the alloy in 0.5M HCl. The microstructure of the annealed sample showed formation of dendrites while precipitation hardened samples in palm kernel oil and SAE 40 engine oil showed precipitates of MgZn2. The SEMS result showed pores and micro cracks on the surfaces of the anodized samples, with the as cast and anodized sample in sulfuric acid exhibiting most compact with few pores. The as cast and sulfuric acid anodized sample shows highest micro hardness value of 205.33 HV, while the least value of 150.67 HV was recorded in sample precipitation hardened in SAE 40 engine oil and anodized in sulfuric acid. Analysis of the potentiodynamic polarization data and curves showed a linear relationship (decrease in icorr, decreases the corrosion rate) between current density and the corrosion rate in all the samples. Higher polarization resistance of 15.093 Ω/cm2 was recorded by the as cast and Sulfuric acid (SA) anodized sample while the precipitation treated in SAE 40 engine oil plus SA anodized sample recorded lowest polarization resistance of 5.2311 Ω/cm2. Heat treatment alone improves corrosion resistance of AA 7075 in 0.5 M HCl solution but heat treatment plus SA anodization does not improve corrosion resistance in the same environment.


2013 ◽  
Vol 662 ◽  
pp. 251-257
Author(s):  
Ning Xia ◽  
Zhi Min Zhu ◽  
Hui Chen

6005A aluminum alloys were welded at different relative humidity conditions. The effects of relative humidity on the salt fog corrosion of the welding joints were researched. The results showed that the weight loss of the joints after 14 days corrosion was higher than that corroded after 7days, but the corrosion rate was lower. The corrosion rate first increased then declined with the increase of environmental humidity for the joints corroded for 7days. However, when the environmental humidity was 80%, corrosion rate achieved the maximum, when environment humidity was 70%, corrosion rate was the lowest. After corroded for 14 days, corrosion rate was the maximum when the environmental humidity was 50%, and it was the lowest when the environmental humidity was 90%. The tensile strength declined obviously after corrosion.


2015 ◽  
Vol 792 ◽  
pp. 174-179
Author(s):  
Mikhail Pervukhin ◽  
Mikhail Kuchinskii

The paper presents the basics of the technology for rapid crystallization of aluminum alloys in electromagnetic field. It is shown that the ingots produced with the stated technology have even microstructure and improved physical and mechanical characteristics.


2014 ◽  
Vol 97 ◽  
pp. 178-185 ◽  
Author(s):  
S. Mohan Kumar ◽  
R. Pramod ◽  
M.E. Shashi Kumar ◽  
H.K. Govindaraju

Author(s):  
Seyed Mahmoud Ghalehbandi ◽  
Alireza Fallahi Arezoodar ◽  
Hossein Hosseini-Toudeshky

Effect of aging treatment on mechanical properties of an age-hardenable aluminum alloy after equal channel angular pressing at room temperature has been investigated using hardness, stress–strain behavior and surface fractography. Aluminum alloy 7075 was pressed after solution treatment. Yield stress, ultimate stress and hardness of pressed samples have increased significantly compared with those of coarse grain, but the elongation to failure has decreased. Also the pressed specimens were subjected to aging treatment at room temperature and temperatures of 80 °C, 100 °C, 120 °C and 140 °C to obtain the optimized strength and ductility. The results indicated that post–equal channel angular pressing aging at 80 °C has resulted in the maximum strength, and natural aging has resulted in good ductility and acceptable strength. It confirmed the fact that there is a potential in obtaining high strength and good ductility in age-hardenable alloys employing severe plastic deformation and subsequent aging.


2017 ◽  
Vol 898 ◽  
pp. 1300-1304
Author(s):  
Peng Fei Wang ◽  
Chen Bin Liu ◽  
Jin Chuan Jie ◽  
Ting Ju Li

The 5083 aluminum alloy was prepared and subjected to cryogenic rolling (CR) after heat treatment. The samples were reduced from 15mm to 1.5 mm in the thickness direction and the amount of deformation was 90%. For comparison, samples with the same deformation amount were obtained by room temperature rolling (RTR). The corrosion behavior of CR and RTR samples was measured by electrochemical test, and their microstructures before and after corrosion had been studied through electron scanning microscopy (SEM) and optical microscope (OM). The influence of cryogenic rolling on the corrosion behavior of 5083 aluminum alloys was explored. The experiment results suggested that anti-corrosion ability of 5083 aluminum alloys could be enhanced through cryogenic rolling. The corrosion potential elevated and the corrosion current density reduced according to the electrochemical test. The primary reasons and corresponding mechanism were also discussed.


Sign in / Sign up

Export Citation Format

Share Document