THE MAIN SOURCES OF WELLS WATER-FLOODING AND PREDICTION PECULIARITIES OF PRODUCED WATER VOLUMES FROM LITHOLOGICALLY ISOLATED GAS-CONDENSATE DEPOSIT

2018 ◽  
pp. 18-23
Author(s):  
M.B. Shinkarev ◽  
◽  
E.A. Reitblat ◽  
N.A. Cheremisin ◽  
◽  
...  
2021 ◽  
Author(s):  
Pavel Dmitrievich Gladkov ◽  
Anastasiia Vladimirovna Zheltikova

Abstract As is known, fractured reservoirs compared to conventional reservoirs have such features as complex pore volume structure, high heterogeneity of the porosity and permeability properties etc. Apart from this, the productivity of a specific well is defined above all by the number of natural fractures penetrated by the wellbore and their properties. Development of fractured reservoirs is associated with a number of issues, one of which is related to uneven and accelerated water flooding due to water breakthrough through fractures to the wellbores, for this reason it becomes difficult to forecast the well performance. Under conditions of lack of information on the reservoir structure and aquifer activity, the 3D digital models of the field generated using the hydrodynamic simulators may feature insufficient predictive capability. However, forecasting of breakthroughs is important in terms of generating reliable HC and water production profiles and decision-making on reservoir management and field facilities for produced water treatment. Identification of possible sources of water flooding and planning of individual parameters of production well operation for the purpose of extending the water-free operation period play significant role in the development of these reservoirs. The purpose of this study is to describe the results of the hydrochemical monitoring to forecast the water flooding of the wells that penetrated a fractured reservoir on the example of a gas condensate field in Bolivia. The study contains data on the field development status and associated difficulties and uncertainties. The initial data were results of monthly analyses of the produced water and the water-gas ratio dynamics that were analyzed and compared to the data on the analogue fields. The data analysis demonstrated that first signs of water flooding for the wells of the field under study may be diagnosed through the monitoring of the produced water mineralization - the water-gas ratio (WGR) increase is preceded by the mineralization increase that may be observed approximately a month earlier. However, the data on the analogue fields shows that this period may be longer – from few months to two years. Thus, the hydrochemical method within integrated monitoring of development of a field with a fractured reservoir could be one of the efficient methods to timely adjust the well operation parameters and may extend the water-free period of its operation.


2001 ◽  
Author(s):  
P. Bedrikovetsky ◽  
D. Marchesin ◽  
F. Shecaira ◽  
A.L. Serra ◽  
A. Marchesin ◽  
...  

2000 ◽  
Vol 3 (02) ◽  
pp. 139-149 ◽  
Author(s):  
Li Kewen ◽  
Firoozabadi Abbas

Summary In a recent theoretical study, Li and Firoozabadi [Li, K. and Firoozabadi, A.: "Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeabilities in Gas-Condensate Systems," paper SPE 56014 available from SPE, Richardson, Texas (2000)] showed that if the wettability of porous media can be altered from preferential liquid-wetting to preferential gas-wetting, then gas-well deliverability in gas-condensate reservoirs can be increased. In this article, we present the results that the wettability of porous media may indeed be altered from preferential liquid-wetting to preferential gas-wetting. In the petroleum literature, it is often assumed that the contact angle through liquid-phase ? is equal to 0° for gas-liquid systems in rocks. As this work will show, while ? is always small, it may not always be zero. In laboratory experiments, we altered the wettability of porous media to preferential gas-wetting by using two chemicals, FC754 and FC722. Results show that in the glass capillary tube ? can be altered from about 50 to 90° and from 0 to 60° by FC754 for water-air and normal decane-air systems, respectively. While untreated Berea saturated with air has a 60% imbibition of water, its imbibition of water after chemical treatment is almost zero and its imbibition of normal decane is substantially reduced. FC722 has a more pronounced effect on the wettability alteration to preferential gas-wetting. In a glass capillary tube ? is altered from 50 to 120° and from 0 to 60° for water-air and normal decane-air systems, respectively. Similarly, because of wettability alteration with FC722, there is no imbibition of either oil or water in both Berea and chalk samples with or without initial brine saturation. Entry capillary pressure measurements in Berea and chalk give a clear demonstration that the wettability of porous media can be permanently altered to preferential gas-wetting. Introduction In a theoretical work,1 we have modeled gas and liquid relative permeabilities for gas-condensate systems in a simple network. The results imply that when one alters the wettability of porous media from strongly non-gas-wetting to preferential gas-wetting or intermediate gas-wetting, there may be a substantial increase in gas-well deliverability. The increase in gas-well deliverability of gas-condensate reservoirs is our main motivation for altering the wettability of porous media to preferential gas-wetting. Certain gas-condensate reservoirs experience a sharp drop in gas-well deliverability when the reservoir pressure drops below the dewpoint.2–4 Examples include many rich gas-condensate reservoirs that have a permeability of less than 100 md. In these reservoirs, it seems that the viscous forces alone cannot enhance gas-well deliverability. One may suggest removing liquid around the wellbore via phase-behavior effects through CO2 and propane injection. Both have been tried in the field with limited success; the effect of fluid injection around the wellbore for the removal of the condensate liquid is temporary. Wettability alteration can be a very important method for the enhancement of gas-well deliverability. If one can alter the wettability of the wellbore region to intermediate gas-wetting, gas may flow efficiently in porous media. As early as 1941, Buckley and Leverett5 recognized the importance of wettability on water flooding performance. Later, many authors studied the effect of wettability on capillary pressure, relative permeability, initial water saturation, residual oil saturation, oil recovery, electrical properties of reservoir rocks, reserves, and well stimulation.6–16 reported that it might be possible to improve oil displacement efficiency by wettability adjustment during water flooding. In 1967, Froning and Leach8 reported a field test in Clearfork and Gallup reservoirs for improving oil recovery by wettability alteration. Kamath9 then reviewed wettability detergent flooding. He noted that it was difficult to draw a definite conclusion regarding the success of detergent floods from the data available in the literature. Penny et al.12 presented a technique to improve well stimulation by changing the wettability for gas-water-rock systems. They added a surfactant in the fracturing fluid. This yielded impressive results; the production following cleanup after fracturing in gas wells generally was 2 to 3 times greater than field averages or offset wells treated with conventional techniques. Penny et al.12 believed that increased production was due to wettability alteration. However, they did not demonstrate that wettability had been altered. Recently, Wardlaw and McKellar17 reported that only 11% pore volume (PV) water imbibed into the Devonian dolomite samples with bitumen. The water imbibition test was conducted vertically in a dry core (saturated with air). Based on the imbibition experiments, they pointed out that many gas reservoirs in the western Alberta foothills of the Rocky Mountains were partially dehydrated and their wettability altered to a weakly water-wet or strongly oil-wet condition due to bitumen deposits on the pores. The water imbibition results of Wardlaw and McKellar17 demonstrated that the inappropriate hypothesis for wetting properties of gas reservoirs might lead to underestimation of hydrocarbon reserves.


Author(s):  
Hsiao-Kang Ma ◽  
Jyun-Sheng Wang ◽  
Ya-Ting Chang

Previous studies of a piezoelectric proton exchange membrane fuel cell with nozzle and diffuser (PZT-PEMFC-ND) have shown that a PZT device could solve flooding problems and improve cell performance. The results also indicated that the rectification efficiency (γ) of the diffuser elements, the PZT vibrating frequency (f), and the displaced volume per stroke (ΔV) affected the flow rate of the PZT device. The rectification efficiency of the diffuser elements, which is an indicator of the preferential direction, depends on the geometrical parameters (AR and θ) and the Reynolds number. In this study, an innovative design for a PZT-PEMFC-ND bi-cell with pseudo bipolar electrodes was developed to achieve a higher power in the stack design to solve water flooding problems and improve cell performance. This new design, with a reaction area of 8 cm2, contains two cells with two outside anodes and two inside cathodes that share a common PZT vibrating device for pumping air flow. The influence of the varying aspect ratio (AR) of the diffuser elements on the unit cell flow rate were investigated using a three-dimensional transitional model. The results show that a proper AR value of 11.25 for the diffuser with a smaller θ of 5° could ensure a smoother intake of the air and thus better cell performance. A lower AR value of 5.63 resulted in smaller actuation pressure inside the chamber, and thus the produced water could not be pumped out. However, a larger AR of 16.88 induced a blocking phenomenon inside the diffuser element, and thus less air was sucked into the cathode chamber. The performance of the PZT-PEMFC-ND bi-cell could be 1.6 times greater than that of the single cell. This performance may be influenced by the phase difference of the operating modes.


2014 ◽  
Vol 675-677 ◽  
pp. 592-595
Author(s):  
Bi Da Qin ◽  
Xuan Dong Dong ◽  
Jia Yu Wang ◽  
Cai Yu Sun ◽  
Dong Pu Guo ◽  
...  

The voltage is the critical electrochemical parameter in microbial fuel cells (MFCs).There are three major oilfield wastewaters including water flooding produced water, polymer flooding produced water and ASP flooding produced water. These three wastewaters were used as anode substrate of three MFCs in this study. The influence and the influencing factors of the output voltage of the three MFCs and the produced water main refractory organics removal effect were studied. The results show that During this reaction period, MFCs cathode potential stays relative stable, however, anode potential shows a remarkable increasing trend, thus, the anode contributes mostly to the change in output voltage. COD removal effect of Anode substrate and the coulombic efficiency are both influencing factors of the anode potential .The microbial fuel cell for wastewater of surfactant, remove the best effect;For different produced water, oil and polymer removal effect abide by the MFC output voltage and COD value changing law.


2014 ◽  
Author(s):  
R. A. McCartney ◽  
SPE, S. Duppenbecker ◽  
R.. Cone

Abstract Field X is a gas condensate field where the wells produce primarily gas and a small amount of formation water mixed with condensation water (<19 Sm3/d per well). Unexpectedly, scale (aragonite, possibly with minor sulfate minerals) was identified in Well A during a routine PLT. To aid scale mitigation planning, the cause of scale deposition has been investigated using scale prediction software. A wide variety of data and information has been used to constrain and verify the scale predictions and as a result they are consistent with the observed type, volume and location of scale, PLT results (inflow temperature, hydrocarbon flow profile), produced water and formation water Ca and Cl concentrations, and production data (hydrocarbon and total water rates). A novel method was developed to estimate the composition of formation water entering the well from produced water analyses (mixtures of condensation and formation water) and where produced water rates are available this can also be used to estimate the rate of flow of formation water into the well. The results suggest that formation water enters the well at low rates (∼1m3) from the upper perforated zone (Formation 1) whilst water-saturated hydrocarbons enter from both the upper and lower zones (Formations 1 and 2). The formation water Cl concentration is between ∼5, 100 and ∼11, 000 mg/L and the Ca concentration may be between ∼121 and ∼177 mg/L. Partial evaporation of formation water (due to pressure decline and Joule-Thomson heating) as it enters the well causes scale deposition. The remaining formation water is produced along with water condensing from gas. An additional risk of total salt deposition in these wells was also identified. This study has shown how a wide range of data can be used to constrain the conditions of scale deposition in such wells. The results of this study are being used to develop scale management plans for the field.


2021 ◽  
Author(s):  
Edward Ennin

Abstract Geological storage of CO2 in saline aquifers is recognized as a favorable technique that could deliver a significant decrease in CO2 emissions over the short to medium-term. However, the major risk is the possibility of leakage and injection limitation due to pore pressure. This research investigates the three major mechanisms of CO2 trapping to determine which method safely captures the most CO2, interrogates the pore pressure effect on storage, and compares traditional core flooding methods for CO2 storage with CO2 drainage which is more practical in the aquifer. A core flooding set up was built to replicate reservoir conditions of the Anadarko Basin in Texas, USA. The research involved three reservoir pay zone rocks obtained from depths of about 7687ft that were pieced together to undergo core flooding at 4400psi-5200psi and a temperature of 168°F. In the first study conducted the core was flooded with supercritical CO2 and brine of salinity 4000ppm to generate relative permeability curves to represent drainage and imbibition. For the duration of the 3rd, 4th, and 5th studies the core saturated with brine is flooded with CO2 at pressures of 4400psi, 4800psi, and 5200psi. Parameters like the volume of CO2 captured, connate water volumes, differential pressure, Ph of produced water, trapping efficiency, relative permeability, and fractional flow curves are noted. After scrutinizing the result it is observed that the highest volume of CO2 is captured by solubility trapping followed by structural trapping and residual trapping in that order. From this research, it can be concluded that CO2 trapping, at least for these reservoir rocks, is not affected by pore pressure. Also contrary to most practices CO2 storage is best replaced in the laboratory using drainage experiments instead of the widely used relative permeability approach.


Sign in / Sign up

Export Citation Format

Share Document