DEVELOPMENT OF A NUMERICAL MODEL OF THE NEAR BOREHOLE ZONE OF A FRACTURED-CARBONATE RESERVOIR THAT ACCOUNTS OF THE FRACTURES PERMEABILITY CHANGES UNDER THE IMPACT OF MECHANICAL EFFECTS DURING WATER INJECTION AND VARYING EFFECTIVE STRESSES

Author(s):  
S.N. Popov ◽  
◽  
O.Yu. Smetannikov ◽  
2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper describes a methodology for assessing the impact of wax deposition in reservoir oil during cold water injection into heterogeneous carbonate reservoir D3-III of the Kharyaga field. The main goal is to determine the optimal amount of hot water that must be injected before switching to cold water without affecting the field development. The paper presents the results of laboratory studies to determine the thermophysical properties of oil, samples of net reservoir and non-reservoir rock, as well as the results of laboratory studies to determine the conditions and nature of wax deposition in oil when the temperature and pressure conditions change. Calculations were carried out to describe the physical model of oil displacement by water of various temperatures. A series of synthetic sector model runs was performed, which includes the average properties of the selected reservoir and the results of laboratory studies in order to determine the effect of cold water injection on the development performance.


AAPG Bulletin ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1473-1493 ◽  
Author(s):  
Mandefro Belayneh ◽  
Sebastian Geiger ◽  
Stephan K. Matthäi

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2021 ◽  
Author(s):  
Maryvi Martinez ◽  
Jhon Ortiz ◽  
Fatmah Alshehhi ◽  
Bhanu Bethapudi ◽  
Krisna Permana ◽  
...  

Abstract With the aim to fulfil a more comprehensive and effective water injection optimization strategy in a giant carbonate reservoir, the asset carried out a dedicated study for a giant carbonate unit (Unit-M) to evaluate the specific challenges and define mitigation actions to improve the reservoir performance. This paper outlines the experience of the successful integration and strong collaborative environment between Reservoir Management Surveillance-Studies, Water Handling, Optimization and Production Operations teams through the project execution leading to optimal solutions in a short period, in accordance with a long-term plan oriented to effectively manage future injection requirements. These actions allowed a favorable impact on the operating costs associated to the new and more efficient water balancing. Water injection, oil production, and reservoir pressure performance in addition to surveillance data for Unit-M have been analyzed at region and well scale. A better-detailed understanding about Peripheral and pattern injection Balance using streamline simulation and material balance analysis provided the support to implement actions that include: reactivation of the pilot pattern WI wells, redistribution of Water Injection in the periphery, maximize the efficiency of the Water injectors (Roll Up, re-utilization in other units, P&A) and Optimize clusters utilization. Moreover, the reservoir simulation was used to verify the impact of the new Water Injection strategy in pressure maintenance, sweep efficiency and the ultimate recovery expected. The conformation of a dedicated task force team between Water Handling Operations and Development teams enable the alignment to common goals and a successful integration that led to define short term actions and mitigate present challenges of waterflood reservoir management. Effective and timely application of these solutions resulted in significant reduced maintenance cost (+/-30%) of the wells and clusters involved.


Sign in / Sign up

Export Citation Format

Share Document