An Enhanced Cost-Effective Approach for WI Optimization Implemented in a Giant Carbonate Reservoir Undergoing a Transition Scheme from Peripheral to Pattern Injection

2021 ◽  
Author(s):  
Maryvi Martinez ◽  
Jhon Ortiz ◽  
Fatmah Alshehhi ◽  
Bhanu Bethapudi ◽  
Krisna Permana ◽  
...  

Abstract With the aim to fulfil a more comprehensive and effective water injection optimization strategy in a giant carbonate reservoir, the asset carried out a dedicated study for a giant carbonate unit (Unit-M) to evaluate the specific challenges and define mitigation actions to improve the reservoir performance. This paper outlines the experience of the successful integration and strong collaborative environment between Reservoir Management Surveillance-Studies, Water Handling, Optimization and Production Operations teams through the project execution leading to optimal solutions in a short period, in accordance with a long-term plan oriented to effectively manage future injection requirements. These actions allowed a favorable impact on the operating costs associated to the new and more efficient water balancing. Water injection, oil production, and reservoir pressure performance in addition to surveillance data for Unit-M have been analyzed at region and well scale. A better-detailed understanding about Peripheral and pattern injection Balance using streamline simulation and material balance analysis provided the support to implement actions that include: reactivation of the pilot pattern WI wells, redistribution of Water Injection in the periphery, maximize the efficiency of the Water injectors (Roll Up, re-utilization in other units, P&A) and Optimize clusters utilization. Moreover, the reservoir simulation was used to verify the impact of the new Water Injection strategy in pressure maintenance, sweep efficiency and the ultimate recovery expected. The conformation of a dedicated task force team between Water Handling Operations and Development teams enable the alignment to common goals and a successful integration that led to define short term actions and mitigate present challenges of waterflood reservoir management. Effective and timely application of these solutions resulted in significant reduced maintenance cost (+/-30%) of the wells and clusters involved.

2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper describes a methodology for assessing the impact of wax deposition in reservoir oil during cold water injection into heterogeneous carbonate reservoir D3-III of the Kharyaga field. The main goal is to determine the optimal amount of hot water that must be injected before switching to cold water without affecting the field development. The paper presents the results of laboratory studies to determine the thermophysical properties of oil, samples of net reservoir and non-reservoir rock, as well as the results of laboratory studies to determine the conditions and nature of wax deposition in oil when the temperature and pressure conditions change. Calculations were carried out to describe the physical model of oil displacement by water of various temperatures. A series of synthetic sector model runs was performed, which includes the average properties of the selected reservoir and the results of laboratory studies in order to determine the effect of cold water injection on the development performance.


2012 ◽  
Vol 52 (2) ◽  
pp. 705
Author(s):  
Andrew Haynes ◽  
Lina Hartanto ◽  
Wee Yong Gan ◽  
Morteza Sayarpour

Barrow Island’s Windalia reservoir is Australia’s largest onshore waterflooding operation, developed in 1965 with waterflooding starting in 1967. The Windalia reservoir is highly heterogeneous and geologically complex, showing low permeabilities and extensive fault networks. Presently, injection rates are constrained by water availability because of aging source water facilities and increased injector failures because of high integrity risks, highlighting the importance of optimised distribution of injection volumes. Static allocation of injection water has historically been conducted on a pattern basis. This approach, however, is not grounded on the relationships between injection and production wells; instead, it honours the geometric layout of the wells. A more dynamic approach was required to account for the changes in status of injectors and water availability that are often encountered in mature waterflood systems. The successful completion of the Windalia capacitance-resistance model (CRM) was leveraged to develop a comprehensive ranking system of all capable injectors, quantifying short-term normalised oil response to maximise the oil production achieved for a given volume of water injected. Improved understanding of injector-producer communication has also provided the ability to extract the maximum value from limited injection water volumes and has the potential to reduce water cycling and the associated water-handling costs. It can also improve the ability to identify and prioritise workover and stimulation opportunities. This work describes the advances in reservoir management capabilities by quantifying the relationships between injector-producer pairs and the dynamic allocation of injection volumes.


2008 ◽  
Vol 11 (04) ◽  
pp. 759-767 ◽  
Author(s):  
C. Shah Kabir ◽  
Nidhal I. Mohammed ◽  
Manoj K. Choudhary

Summary Understanding reservoir behavior is the key to reservoir management. This study shows how energy modeling with rapid material-balance techniques, followed by numerical simulations with streamlines and finite-difference methods, aided understanding of reservoir-flow behavior. South Rumaila's long and elongated Zubair reservoir experiences uneven aquifer support from the western and eastern flanks. This uneven pressure support prompted injection in the weaker eastern flank to boost reservoir energy. We learned that aquifer influx provided nearly 95% of the reservoir's energy in its 50-year producing life, with water injection contributing less than 5% of the total energy supply. The west-to-east aquifer energy support is approximately 29:1, indicating the dominance of aquifer support in the west. Streamline simulations with a 663,000-cell model corroborated many of the findings learned during the material-balance phase of this study. Cursory adjustments to aquifer properties led to acceptable match with pulse-neutron capture or PNC-derived-time-lapse oil/water contact (OWC) surfaces. This global-matching approach speeded up the history-matching exercise in that performance of most wells was reproduced, without resorting to local adjustments of the cell properties. The history-matched model showed that the top layers contained the attic oil owing to lack of perforations. Lessons learned from this study include the idea that the material-balance work should precede any numerical flow-simulation study because it provides invaluable insights into reservoir-drive mechanisms and integrity of various input data, besides giving a rapid assessment of the reservoir's flow behavior. Credible material-balance work leaves very little room for adjustment of original hydrocarbons in place, which constitutes an excellent starting point for numerical models. Introduction Before the advent of widespread use of computers and numeric simulators, material-balance (MB) studies were the norm for reservoir management. In this context, Stewart et al. (1954), Irby et al. (1962), and McEwen (1962) presented useful studies. Most popular MB methods include those of Havlena and Odeh (1963), Campbell and Campbell (1978), and Tehrani (1985), among others. Pletcher (2002) provides a comprehensive review of the available MB techniques. In the modern era, classical MB studies seldom precede a full-field numeric modeling, presumably because MB is implicit in this approach. Nonetheless, we think valuable lessons can be learned from analytic MB studies at a fraction of time needed for detailed numeric modeling, preceded by geologic modeling. Of course, the value and amount of information derived from a multicell numeric model cannot be compared to a single-cell MB model. But, an analytic MB study can be an excellent precursor to any detailed 3D modeling effort. Although this point has been made by others (Dake 1994; Pletcher 2002), practice has, however, lagged conventional wisdom. In this paper, we attempt to show the value of a zero-dimensional MB study prior to doing detailed 3D numeric modeling, using both streamline and finite-difference methods. Streamline simulations speeded up the history-matching effort by a factor of three. However, we used the finite-difference approach in prediction runs for its greater flexibility in invoking various producing rules. Initially, the MB study provided key learnings about gross reservoir behavior very rapidly. In particular, energy contributions made by different drive mechanisms, such as uneven natural water influx and water injection, were of great interest for ongoing reservoir-management activities. Estimating in-place hydrocarbon volume and relative strength of the aquifer in the western and eastern flanks constituted key objectives of this study segment. Following the MB segment of the study, we pursued full-field match of historical data (pressure and OWC) with a streamline flow simulator to take advantage of rapid turnaround time. Thereafter, prediction runs were made with the finite-difference model to answer the ongoing water-injection question in the eastern flank of the reservoir. We learned that water injection should be turned off for improved sweep, leading to increased ultimate oil recovery. In addition, the numeric models identified the presence of remaining oil in the attic for future exploitation.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2021 ◽  
Author(s):  
Klemens Katterbauer ◽  
Abdulkarim Al Sofi ◽  
Alberto Marsala ◽  
Ali Yousif

Abstract The energy industry has been transformed considerably in the last years. Sustainable development of oil and gas reservoir has become a major driver for these energy companies, and strengthened the focus to maximize hydrocarbon extraction while minimizing the associated carbon footprint. The focus has been further on maximizing efficiency and waste reduction in order to enhance profitability of projects. Challenges still remain in terms of that the carbon emissions from oilfield operations, related to the production, disposal and utilization of water and hydrocarbons, may be significant and the objective of increasing production has to be traded off in many instances against the quest for reducing carbon emissions. The fourth industrial revolution has brought new opportunities for companies to enhance decision making in their upstream development and optimize their recovery potential while minimizing the carbon footprint and associated cost. In this work, we present a smart approach for optimizing recovery while minimizing the carbon footprint of a reservoir in terms of the associated development and production activities. We use an advanced nonlinear autoregressive neural network approach integrated with time-lapse electromagnetic monitoring data to forecast production and carbon emissions from the reservoir in real-time, under uncertainty. The artificial intelligence approach also allows to investigate a circular carbon approach, where the produced greenhouse gases are re-injected into the well, while at the same time adjusting water injection levels. This allows to forecast and analyze the impact of a circular development plan. We tested the AI framework on a synthetic reservoir encompassing a complex carbonate fracture system and well setup. The carbon emissions were forecasted in real-time based on the previous production rates and the defined injection levels. The forecasted carbon emissions were then integrated into an optimization technique, in order to adjust injection levels to minimize water cut and overall carbon emissions, while optimizing production rates. Results were promising and highlighted the potential significant reductions in carbon emissions for the studied synthetic reservoir case. Moreover, the deployment of deep electromagnetic surveys was proved particularly beneficial as a deep formation evaluation monitoring method for tracking the injected waterfront inside the reservoir and optimizing the sweep efficiency, while minimizing the inefficient use of water injection. Accordingly, such integrated AI approach has a twofold benefit: maximizing the hydrocarbon productivity, while minimizing the water consumption and associated carbon emissions. Such framework represents a paradigm shift in reservoir management and improved oil recovery operations under uncertainty. It proposes an innovative integrated methodology to reduce the carbon footprint and attain a real-time efficient circular development plan.


2021 ◽  
Author(s):  
M. Arief Salman Alfarizi ◽  
Marja Dinata ◽  
Rizki Ananda Parulian ◽  
Kamal Hamzah ◽  
Tejo Sukotrihadiyono ◽  
...  

Abstract XJN field has implemented water injection as pressure maintenance since 1987, only one year after initial production. XJN is carbonate reservoir with weak aquifer underlying the oil zone. Initial reservoir pressure was 2,700 psi and peak production was 27,000 BOPD. Reservoir pressure was drop to 1,800 psi within 5 years of production. During 1991-2007, better injection management was performed to provide negative voidage. This action has managed to bring reservoir pressure back to its initial pressure, eventually enabling all wells to be converted from gaslift to naturalflow. In 2013, watercut has increased to 97% and several naturally flowing wells began to ceased-to-flow, then production mode was changed gradually from naturalflow to artificial lift using Electric Submersible Pump (ESP). In 2017-2020, there was rapid reservoir pressure decline around 300 psi/year while XJN water injection performance considered flawless. Voidage Replacement Ratio (VRR) was 1.3, but reservoir pressure was kept declining. This situation will cause ESP pump off on producer wells which in turn means big production loss. This paper will elaborate about the simple-uncommon-yet effective methods for problem detection and its solution to revive pressure and production. Analysis was began with observing the deviation of VRR and reservoir pressure, this was to estimate "leak" time of water injection. Next analysis was evaluation of injection rate leak off using material balance with reverse history matching. Reverse here means making reservoir pressure as main constraint rather than history matching goal. After that, it was continued with water injection flow path analysis. This was done by plotting production-injection-pressure data then make several small groups of injector-producer based on visible relationships. The purposes were to find key injector wells and to shut-in all inefficient ones. Furthermore, injection re-distribution was also performed based on VRR calculation on groups from previous step, water distribution priority was focused on key injector wells. These analysis have also paved the way for searching channeling possibility on injector wells. The results, XJN reservoir pressure showed an increasing trend of 100 psi/year after optimization was performed, with current pressure around 2000 psi. The increase in reservoir pressure has also made it possible to optimize ESP, field lifting has increased for 5000 BLPD. This project has also successfully secured XJN remaining oil. This project was racing with rapid pressure decline that will lead to early ESP pump off and production loss. The integrated subsurface analytical methods and actions being taken were simple but effective. Close monitoring on reservoir pressure, water injection and ESP parameters will be needed as field surveillance. Integrated analysis with surface facility engineering should also be carried out in the future in regards to surface network, injection rate and reservoir pressure.


Sign in / Sign up

Export Citation Format

Share Document