scholarly journals Study the effect of gamma radiation on the some properties of glass and glass-ceramic immobilize nuclear waste

2019 ◽  
Vol 11 (21) ◽  
pp. 75-83
Author(s):  
Asia H. Al-Mashhadani

Vitrifications process one of the important methods to immobilize nuclear waste.  In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the crystalline glass to amorphous glass. A conclusion from these ionization studies is that the limited magnitude of Strontium ion leaching associated with ionization damage does not appear to pose any direct problems for the safe storage of nuclear waste glass.

2012 ◽  
Vol 6 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Fatma Margha ◽  
Amr Abdelghany

Ternary borate glasses from the system Na2O?CaO?B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crys?talline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM) and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.


2008 ◽  
Vol 1124 ◽  
Author(s):  
Melody Lyn Carter ◽  
Hui Li ◽  
Yingjie Zhang ◽  
Andrew L Gillen ◽  
Eric R Vance

AbstractHot isostatically pressed (HIPed) glass-ceramics for the immobilization of uranium-rich intermediate-level wastes and Hanford K-basin sludges were designed. These were based on pyrochlore-structured Ca(1-x)U(1+y)Ti2O7 in glass, together with minor crystalline phases. Detailed microstructural, diffraction and spectroscopic characterization of selected glass-ceramic samples has been performed, and chemical durability is adequate, as measured by both MCC-1 and PCT-B leach tests.


2013 ◽  
Vol 834-836 ◽  
pp. 309-314
Author(s):  
Zi Fan Xiao ◽  
Jin Shu Cheng ◽  
Jun Xie

A glass-ceramic belonging to the CaO-Al2O3-SiO2(CAS) system with different composition of spodumene and doping the Li2O with amount between 0~2.5 % (mass fraction) were prepared by onestage heat treatment, under sintering and crystallization temperature at 1120 °C for two hours. In this paper, differential thermal analysis, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and bending strength test were employed to investigate the microstructure and properties of all samples. β-wollastonite crystals were identified as the major crystalline phases, and increasing Li2O was found to be benefit for the crystallization and tiny crystalline phases remelting, resulting in the content of major crystalline phases increased first and then decreased with increasing the expense of spodumene. Meanwhile, the crystal size can be positively related with the content of Li2O. The preferable admixed dosage of spodumene can be obtained, besides the strength of glass-ceramics can be more than 90 MPa.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5413
Author(s):  
Rabiatul Adawiyah Abdul Wahab ◽  
Mohd Hafiz Mohd Zaid ◽  
Sidek Hj. Ab Aziz ◽  
Khamirul Amin Matori ◽  
Yap Wing Fen ◽  
...  

In this study, the authors attempted to propose the very first study on fabrication and characterization of zinc-boro-silicate (ZBS) glass-ceramics derived from the ternary zinc-boro-silicate (ZnO)0.65(B2O3)0.15(RHA)0.2 glass system through a conventional melt-quenching method by incorporating rice husk ash (RHA) as the silica (SiO2) source, followed by a sintering process. Optimization of sintering condition has densified the sintered samples while embedded beta willemite (β-Zn2SiO4) and alpha willemite (α-Zn2SiO4) were proven in X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) has shown the distribution of willemite crystals in rhombohedral shape crystals and successfully form closely-packed grains due to intense crystallization. The photoluminescence (PL) spectra of all sintered ZBS glasses presented various emission peaks at 425, 463, 487, 531, and 643 nm corresponded to violet, blue, green, and red emission, respectively. The correlation between the densification, phase transformation, microstructure, and photoluminescence of Zn2SiO4 glass-ceramic phosphor is discussed in detail.


2010 ◽  
Vol 92 ◽  
pp. 131-137 ◽  
Author(s):  
Qiu Hua Yuan ◽  
Pei Xin Zhang ◽  
Li Gao ◽  
Hai Lin Peng ◽  
Xiang Zhong Ren ◽  
...  

The crystallization behavior of MgO-Al2O3-SiO2 glass-ceramics by sol-gel technology was investigated by using x-ray diffraction (XRD), differential thermal analysis (DTA), Scanning electron microscopy (SEM). The results showed that: (1)α-cordierite phase was precipitated when the green body was calcined at 1050°C, and α-cordierite of high purity and stability could be formed at 1100°C; (2) Adding an appropriate amount of low melting point glass powder into the green body may provide liquid-phase environment during the sintering process, which will help enhance the tightness density of glass-ceramic, and thus improve its flexural strength.


2014 ◽  
Vol 953-954 ◽  
pp. 1643-1648
Author(s):  
Hang Li ◽  
Li Qiang Liu ◽  
Min Jing ◽  
Zhi Gang Wang ◽  
Zheng Wang ◽  
...  

The glass-ceramic materials were produced from silicon slag with the addition of talcum powder and TiO2 by melting them in an electrically heated furnace and subsequent heat treatment at various temperatures and time. The microstructure and crystallization behaviors of glass–ceramics have been investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). With the increase of silicon slag content, the sequent precipitate phase is: krinovite Na (Mg1.9Fe0.1)Cr (SiO)3O, pseudobrookite Fe2TiO5 and anorthite Ca (Al2Si2O8), enstatite ferroan MgFeSi2O6, and albite Na (AlSi3O8). The shape of crystals was spherical grains. The glass–ceramic sample obtained from 70% silicon slag had the excellent mechanical performance including flexural strength of 200.45 MPa and Vickers micro hardness of 909.72 MPa.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Nur Farhana Samsudin ◽  
Khamirul Amin Matori ◽  
Josephine Ying Chi Liew ◽  
Yap Wing Fen ◽  
Mohd Hafiz Mohd Zaid ◽  
...  

Mn-doped willemite (Zn2SiO4:Mn2+) glass-ceramics derived from ZnO-SLS glass system were prepared by a conventional melt-quenching technique followed by a controlled crystallization step employing the heat treatment process. Soda lime silica (SLS) glass waste, ZnO, and MnO were used as sources of silicon, zinc, and manganese, respectively. The obtained glass-ceramic samples were characterized using the X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), UV-Visible (UV-Vis), and photoluminescence (PL) spectroscopy. The results of XRD revealed that ZnO crystal and willemite (β-Zn2SiO4) were presented as major embedded crystalline phases. This observation was consistent with the result of FESEM which showed the presence of irregularity in shape and size of willemite crystallites. FTIR spectroscopy exhibits the structural evolution of willemite based glass-ceramics. The optical band gap shows a decreasing trend as the Mn-doping content increased. Photoluminescent technique was applied to characterize the role of Mn2+ions when entering the willemite glass-ceramic structure. By measuring the excitation and emission spectra, the main emission peak of the glass-ceramic samples located at a wavelength of 585 nm after subjecting to 260 nm excitations. The following results indicate that the obtained glass-ceramics can be applied as phosphor materials.


2014 ◽  
Vol 8 (4) ◽  
pp. 203-210 ◽  
Author(s):  
Gamal Khater ◽  
Maher Idris

The crystallization of some glasses, based on celsian-spodumene glass-ceramics, was investigated by different techniques including differential thermal analysis, optical microscope, X-ray diffraction, indentation, microhardness, bending strengths, water absorption and density measurement. The batches were melted and then cast into glasses, which were subjected to heat treatment to induce controlled crystallization. The resulting crystalline materials were mainly composed of ?-eucryptite solid solution, ?-spodumene solid solution, hexacelsian and monoclinic celsian, exhibiting fine grains and uniform texture. It has been found that an increasing content of celsian phase in the glasses results in increased bulk crystallization. The obtained glass-ceramic materials are characterized by high values of hardness ranging between 953 and 1013 kg/mm2, zero water absorption and bending strengths values ranging between 88 and 126MPa, which makes them suitable for many applications under aggressive mechanical conditions.


2000 ◽  
Vol 663 ◽  
Author(s):  
Donggao Zhao ◽  
Liyu Li ◽  
L.L. Davis ◽  
W.J. Weber ◽  
R.C. Ewing

ABSTRACTA Gd-rich crystalline phase precipitated in a sodium gadolinium alumino-borosilicate glass during synthesis. The glass has a chemical composition of 45.4-31.1 wt% Gd2O3, 28.8-34.0 wt% SiO2, 10.8-14.0 wt% Na2O, 4.3-5.9 wt% Al2O3, and 10.8-14.9 wt% B2O3. Backscattered electron images revealed that the crystals are hexagonal, elongated, acicular, prismatic, skeletal or dendritic, tens of μm in size, some reaching 200 μm in length. Electron microprobe analysis confirmed that the crystals are chemically homogeneous and have a formula of NaGd9(SiO4)6O2 with minor B substitution for Si. The X-ray diffraction pattern of this phase is similar to that of lithium gadolinium silicate apatite. Thus, this hexagonal phase is a rare earth silicate with the apatite structure. We suggest that this Gd-silicate apatite in a Gd-borosilicate glass is a potential glass-ceramic nuclear waste form for actinide disposition. Am, Cm and other actinides can easily occupy the Gd-sites. The potential advantages of this glass-ceramic waste form include: 1) both the glass and apatite can be used to immobilize actinides, 2) silicate apatite is thermodynamically more stable than the glass, 3) borosilicate glass-bonded Gd-silicate apatite is easily fabricated, and 4) the Gd is an effective neutron absorber.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Hafiz Mohd Zaid ◽  
Khamirul Amin Matori ◽  
Sidek Hj. Abdul Aziz ◽  
Halimah Mohamed Kamari ◽  
Wan Mahmood Mat Yunus ◽  
...  

Willemite glass-ceramics were successfully derived from conventional melt-quench ZnO-SLS precursor glass by an isothermal heat treatment process. The effect of heat treatment temperatures on the physical properties was investigated by Archimedes principle and linear shrinkage. The generation of willemite crystal phase and morphology with increase in heat treatment temperature was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM) techniques. X-ray diffraction revealed that the metastableβ-Zn2SiO4and thermodynamically stable zinc orthosilicateα-Zn2SiO4phases can be observed at temperatures above 700°C. The experimental results indicated that the density and shrinkage of the glass-ceramic vary with increasing the sintering temperature. FTIR studies showed that the structure of glass-ceramic consists of SiO2and ZnO4units and exhibits the structural evolution of willemite glass-ceramics. The characteristic of strong vibrational bands can be related to theSiO44-tetrahedron corresponding to reference spectra of willemite.


Sign in / Sign up

Export Citation Format

Share Document