scholarly journals The influence of local climate change on the productivity of spring cereals in the Kirov region

2021 ◽  
Vol 22 (2) ◽  
pp. 244-253
Author(s):  
I. V. Lyskova ◽  
O. E. Sukhoveeva ◽  
T. V. Lyskova

On the basis of long-term meteorological data and research results in a long-term stationary experiment of 1971-2020 a retrospective analysis of changes in air temperature and precipitation in the eastern region of the central climatic zone of the Kirov region was carried out and the influence of these characteristics on the dynamics of the yield of spring cereals was estimated. It has been established that the average annual air temperature during the research period was 2.4±1.0 °C. At the same time, its stable positive trend was observed at the rate of 0.39 °С /10 years. Two decades from 2001 to 2020 were recorded as the warmest for 50 years, when the temperature was 0.7...2.6 °C above climate normal. Selyaninov hydrothermal coefficient (0.7...2.1) testifies to the contrasting conditions of humidification of the vegetation periods during the research years – from drought to excessively humidified. In a long-term experiment, the yield of spring cereals increased in the row wheat – barley – oats: 2.17±0.86, 3.04±0.61, 3.39±0.65 t/ha, respectively. Strong correlations were marked between the average yield (spring wheat) and weather conditions in June: reverse with air temperature (rр = -0.735) and direct with the amount of precipitation (rр = 0.686). It has been established that the use of phosphorus fertilizers (and their aftereffect) in combination with nitrogen-potassium fertilizers weakened the influence of weather conditions on the productivity of spring wheat: the determination coefficients (R2), which reflect the portion of variability due to weather conditions, were 0.59-0.73 for the variant without fertilizers and decreased to 0.50-0.56 when applying NP3K.

2017 ◽  
Vol 63 (2) ◽  
pp. 86-91
Author(s):  
Martin Danilovič ◽  
Helena Hlavatá ◽  
Božena Šoltysová

Abstract The paper describes the procedure of calculation and assessment of deviations of the average air temperature from the normal (in relation to the normal 1961‒1990) or long-term average and the percentage of normal precipitation or long-term sum of precipitation, valid for the Slovak Republic. Three evaluation tables clearly indicate both threshold limit values, which facilitate the classification of the calculated indices for air temperature and precipitation. Criteria presented in this work are fully applicable for weather conditions evaluation during the growing season of cultivated plants in the Slovak Republic.


2008 ◽  
Vol 49 ◽  
pp. 7-10 ◽  
Author(s):  
Yukari Takeuchi ◽  
Yasoichi Endo ◽  
Shigeki Murakami

AbstractLong-term data of winter air temperature and precipitation were analyzed and the correlation between them investigated in order to identify the factors influencing snow reduction during the recent warmer winters in the heavy-snowfall areas in Japan. A high negative correlation between winter precipitation and air temperature was identified in the heavy-snowfall areas on the Sea of Japan side in the center of the main island (Honshu). It was confirmed that precipitation is mainly caused by cold winter monsoons, and thus correlates to a large extent with air temperature in these areas. The precipitation decrease can be considered an effective factor for the recent reduction in snow as well as the snowfall to precipitation ratio. This should be taken into account for a better prediction of snow reduction in relation to global warming.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2016 ◽  
Vol 69 (2) ◽  
Author(s):  
David Paul Belesky ◽  
Dariusz Piotr Malinowski

Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO<span><sub>2</sub></span>. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.


2021 ◽  
Vol 31 ◽  
pp. 00022
Author(s):  
Rashit Sheremetov ◽  
Peter Stieglbauer

The characteristic of a number of parameters variability of the Kuzbass Botanical Garden climate are studied for the period from 1966 to 2020.An indirect assessment of the climate based on the climate biological efficiency index is given. The analysis of the long-term dynamics of the selected parameters is carried out, the main temporal patterns in their distribution are revealed. As initial materials, air temperature and precipitation daily data for the period 1966-2020.


1993 ◽  
Vol 18 ◽  
pp. 107-112
Author(s):  
Tatsuhito Ito ◽  
Masaru Yamaoka ◽  
Hisayuki Ohura ◽  
Takashi Taniguchi ◽  
Gorow Wakahama

In Hokkaido we have often experienced hazardous accidents, such as tower collapses and conductor breakage, caused by wet-snow accretion on transmission lines, and over many years have developed countermeasures for wet-snow accretion. Recently we have been developing a system to forecast areas where snow accretion may occur. We used the southern part of Hokkaido, divided into 5 km × 5 km meshes, as a forecast area; our predictions were hourly, 3–24 hours in advance. A method of predicting meteorological data which forms an important part of the system predicts three elements which influence wet-snow accretion: air temperature, precipitation, and wind direction and speed. We used an interpolation for predicting temperature and precipitation and a one-level, mesoscale model for diagnosing surface winds for wind direction and speed. By applying the method to many examples of wet-snow accretion, we checked the prediction of weather elements.


1993 ◽  
Vol 18 ◽  
pp. 190-192
Author(s):  
Kenji Shinojima ◽  
Hiroshi Harada

We compute the weight of the snow cover as a function of the daily quantity of precipitation and daily melting using only data from the Automated Meteorological Data Acquisition System (AMeDAS), which is used widely in Japan. The correlation between long-term measurements and meteorological data in AMeDAS factors was computed by statistical methods from the Forestry and Forest Product Research Institute, Tokamachi Experiment Station, in Niigata Prefecture, using data for 11 winter seasons (1977–87). The daily quantity of melting is expressed with a three-day moving average of degree days. The coefficient of correlation between the daily groups of each value of the 1323 days during the 11 winter seasons was 0.986 with a standard deviation of ±590 Ν m−2. Thus, if air temperature and precipitation can be obtained for an area, the weight of the snow cover can be estimated with confidence.


1993 ◽  
Vol 18 ◽  
pp. 190-192
Author(s):  
Kenji Shinojima ◽  
Hiroshi Harada

We compute the weight of the snow cover as a function of the daily quantity of precipitation and daily melting using only data from the Automated Meteorological Data Acquisition System (AMeDAS), which is used widely in Japan. The correlation between long-term measurements and meteorological data in AMeDAS factors was computed by statistical methods from the Forestry and Forest Product Research Institute, Tokamachi Experiment Station, in Niigata Prefecture, using data for 11 winter seasons (1977–87).The daily quantity of melting is expressed with a three-day moving average of degree days. The coefficient of correlation between the daily groups of each value of the 1323 days during the 11 winter seasons was 0.986 with a standard deviation of ±590 Ν m−2. Thus, if air temperature and precipitation can be obtained for an area, the weight of the snow cover can be estimated with confidence.


2009 ◽  
Vol 48 (3) ◽  
pp. 429-449 ◽  
Author(s):  
Yves Durand ◽  
Martin Laternser ◽  
Gérald Giraud ◽  
Pierre Etchevers ◽  
Bernard Lesaffre ◽  
...  

Abstract Since the early 1990s, Météo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratification, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions in France. Given the lack of sufficient directly observed long-term snow data, this “SAFRAN”–Crocus–“MEPRA” (SCM) model chain, usually applied to operational avalanche forecasting, has been used to carry out and validate retrospective snow and weather climate analyses for the 1958–2002 period. The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions. Vertical profiles of temperature and precipitation averaged over the whole period for altitudes up to 3000 m MSL show a relatively linear variation with altitude for different mountain areas with no constraint of that kind imposed by the analysis scheme itself. Over the observation period 1958–2002, the overall trend corresponds to an increase in the annual near-surface air temperature of about 1°C. However, variations are large at different altitudes and for different seasons and regions. This significantly positive trend is most obvious in the 1500–2000-m MSL altitude range, especially in the northwest regions, and exhibits a significant relationship with the North Atlantic Oscillation index over long periods. Precipitation data are diverse, making it hard to identify clear trends within the high year-to-year variability.


2020 ◽  
Vol 143 (1-2) ◽  
pp. 177-191
Author(s):  
Peter Hoffmann ◽  
Arne Spekat

AbstractThis study looks into the question to what extent long-term change patterns of observed temperature and rainfall over Europe can be attributed to dynamical causes, in other words: Are the observed changes due to a change in frequency of the patterns or have the patterns’ dynamical properties changed? By using a combination of daily meteorological data and a European weather-type classification, the long-term monthly mean temperature and precipitation were calculated for each weather-type. Subsequently, the observed weather-type sequences were used to construct analogue time series for temperature and precipitation which only include the dynamical component of the long-term variability since 1961. The results show that only a fraction of about 20% of the past temperature rise since 1990, which for example amounted to 1 °C at the Potsdam Climate Station can be explained by dynamical changes, i.e. most of the weather-types have become warmer. Concerning long-term changes of seasonal rainfall patterns, a fraction of more than 60% is considerably higher. Moreover, the results indicate that for rainfall compared with temperature, the decadal variability and trends of the dynamical component follow the observed ones much stronger. Consequently, most of the explained seasonal rainfall variances can be linked to changes in weather-type sequences in Potsdam and over Europe. The dynamical contribution to long-term changes in annual and seasonal rainfall patterns dominates due to the fact that the alternation of wet and dry weather-types (e.g. the types Trough or High pressure over Central Europe), their frequencies and duration has significantly changed in the last decades.


Sign in / Sign up

Export Citation Format

Share Document