Oxidative stress alleviation as indicated by enzymatic and non-enzymatic antioxidants and osmoregulators in barley (Hordeum vulgare L.) under salt (NaCl) stress by ascorbic acid (ASA)

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Amara Hassan ◽  
Muhammad Hamzah Saleem ◽  
Abida Perveen ◽  
Mobeen Mobeen ◽  
Sajjad Ali ◽  
...  
2019 ◽  
Vol 99 (11) ◽  
pp. 5176-5186 ◽  
Author(s):  
Yan Ma ◽  
Pei Wang ◽  
Ting Zhou ◽  
Zhijie Chen ◽  
Zhenxin Gu ◽  
...  

2005 ◽  
Vol 45 (2) ◽  
pp. 103-112 ◽  
Author(s):  
René Mascher ◽  
Susan Fischer ◽  
Waltraud Scheiding ◽  
Aurora Neagoe ◽  
Hans Bergmann

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Neelma Munir ◽  
Sheza A. Khilji ◽  
Maryam Shabir ◽  
Zahoor A. Sajid

Ocimum sanctum L. (Tulsi) is the most important medicinal plant that has antimicrobial, antioxidants, and anticarcinogenic effects on human health. Plants, when under stress, gather several antioxidants and osmoprotectants. The present work focuses on the abiotic stress response of Tulsi and its mitigation by the application of ascorbic acid. In addition to this, an enhancement of antioxidant and antimicrobial activity was also analyzed using ascorbic acid. During the present work, when plants were grown under NaCl stress and ascorbic acid (AA) was provided with foliar applications, it ascertained encouraging effects on growth; likewise, its effect remains stable under salinity stress. The enzymatic antioxidants activity showed a significant change in response to AA alone or in combination. The highest catalase activity was recorded in plants subjected to 0.5 mM AA in combination with 100 mM NaCl (0.65 units/mL of enzyme). Likewise, a similar trend was recorded for the superoxide dismutase activity of Tulsi plants. The highest activity of SOD was recorded in plants subjected to 0.5 mM AA in combination with 100 mM NaCl (66.1 units/mg of protein). Flavonoid content showed its highest amount (27.41 mg/g) when plants were treated with 0.5 mM AA + 100 mM NaCl while the highest phenolic content (1.88 mg/g) was analyzed in salt treated plants sprayed with 0.5 mM AA. In the case of antimicrobial activity, 0.5 mM AA treated plants gave the highest value for the Staphylococcus aureus as 2.15 cm and in Clostridium species was 2.1 cm in the plants treated with 1 mM AA alone. Hence, the findings of the present study may lead to the conclusion that AA has a significant role in defense mechanisms of plants in response to salt stress. Further, it enhances the antimicrobial and antioxidant potential of Tulsi plants grown under salt stress.


2021 ◽  
pp. 197-203
Author(s):  
N. Jamuna ◽  
R. Sozharajan ◽  
M. Rajaravindran ◽  
S. Natarajan

The effect of NaCl stress on antioxidant enzymes activities was investigated in the leaves of Excoecaria agallocha. Plants were subjected to different levels of NaCl. 100 to 1000 mM. Above 500 mM these mangrove seedlings did not survive. The leaves of 60 day old plants were used for the analysis of enzyme activities. Parameters of enzymatic and non enzymatic antioxidants such as catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), polyphenol oxidase (PPO), superoxide dismutase (SOD), ascorbic acid (ASA) and alpha tocopherol were determined. The highest CAT, POD, APX, PPO and SOD activities in the leaf and root enhanced gradually up to 300 mM of NaCl, the highest ASA and tocopherol activities in the leaf and root were observed at 500 mM of NaCl. These data suggest that the capacity to limit oxidative damage is important for the salt tolerance of E. agallocha.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 862
Author(s):  
Shahida Anusha Siddiqui ◽  
Andrey Vladimirovich Blinov ◽  
Alexander Vladimirovich Serov ◽  
Alexey Alekseevich Gvozdenko ◽  
Alexander Aleksandrovich Kravtsov ◽  
...  

Within the framework of this study, the effect of nanoparticles of the essential trace element selenium stabilized by Polyvinylpirrolidone (PVP) C15 (8 ± 2 kDa) and ascorbic acid on the germination of barley seeds has been studied. Selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid, characterized by a spherical shape, monodisperse size distribution, and a diameter of about 70 ± 5 nm, were obtained by the chemical reduction method. The experiment compared the effect of selenium nanoparticles and selenous acid on seed germination. The positive effect of preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid on the length of roots and shoots, the number of roots, and the percentage of seed germination has been revealed. It was determined that the highest percentage of Hordeum vulgare L. culture seed germination was achieved using a preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid at a concentration of of 4.65 µg/mL. Analysis of the results showed that selenium in the form of nanoparticles has an order of magnitude that is less toxic than in the form of selenous acid. The study of morphological and functional parameters during the germination of Hordeum vulgare L. seeds allowed us to conclude that selenium nanoparticles can be successfully used in agronomy and agriculture to provide plants with the essential microelement selenium, which is necessary for the normal growth and development of crops.


2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Ghader HABIBI ◽  
Maryam SHAHINFAR

<p>In this study, we used silicon (Si, in the form of K<sub>2</sub>SiO<sub>3</sub>, 2 mM) to alleviate the toxicity of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) in barley (<em>Hordeum vulgare</em> L.). Using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) analyses, we showed that the Al<sub>2</sub>O<sub>3</sub> NPs were taken up by barley plants. Barley growth was negatively affected by the addition of 3 g l<sup>-1</sup> nano-Al<sub>2</sub>O<sub>3</sub>, whereas the diminishing effect of NPs on barley growth was not obvious when 1 g l<sup>-1</sup> nano-Al<sub>2</sub>O<sub>3</sub> was applied, indicating that the nano-Al<sub>2</sub>O<sub>3</sub> action is dependent on nano-Al<sub>2</sub>O<sub>3</sub> dose. Si pretreatment ameliorated toxic effects of high nano-Al<sub>2</sub>O<sub>3</sub> on root growth. Si pretreatment did not decrease nano-Al<sub>2</sub>O<sub>3</sub> entry into roots but reduced nano-Al<sub>2</sub>O<sub>3</sub> accumulation in the shoot. The restriction of the root-to-shoot translocation of nano-Al<sub>2</sub>O<sub>3 </sub>was one of the important mechanisms for Si to mitigate high nano-Al<sub>2</sub>O<sub>3</sub> toxicity. The occurrence of oxidative stress was found under 3 g l<sup>1</sup> nano-Al<sub>2</sub>O<sub>3 </sub>treatment, as evaluated by the accumulation of malondialdehyde (MDA). Exogenous addition of Si could alleviate toxicity symptoms induced by Al<sub>2</sub>O<sub>3</sub> nanoparticles by reducing lipid peroxidation via enhancing antioxidant activity of catalase as well as by limiting the root-to-shoot translocation of nano-Al<sub>2</sub>O<sub>3</sub>. These data provide the first direct evidence that the Si pretreatment ameliorates nano Al<sub>2</sub>O<sub>3</sub> phytotoxicity in plants.</p>


2018 ◽  
Vol 8 ◽  
pp. 1224-1234
Author(s):  
Saud A. Alamri ◽  
Manzer H Siddiqui ◽  
Mutahhar Y. Al-Khaishani ◽  
Hayssam M. Ali

Boron (B), an essential micronutrient, helps the plants to complete their life cycle successfully. Therefore, the present experiment was conducted to study (1) the role of B in seed germination and seedling growth, (2) the toxicity effect of B in seed germination and seedling growth and (3) the role of B in tolerance of barley (Hordeum vulgare L. var. ‘Bakore’) to NaCl stress. Under NaCl stress and non-stress conditions, application of high levels of B (100 µM) decreased parameters of germination (G%, VI, GI and MGT), growth (RL, SL, RFW, SFW, RDW and SDW), except the accumulation of Pro and MDA in barley seedlings. Also, a fluorescence study reveals that production of ROS (H2O2 and O2 •—) and non-viable cells increased in roots of barley seedlings treated with NaCl and high dose of B. An alteration in anatomical structure of barley seedlings was observed with the application of NaCl and high dose of B. However, a low concentration of B (50 µM) proved best and increased all germination and growth traits of barley seedlings by increasing further accumulation of Pro. Also, 50 µM of B significantly increased the biosynthesis of photosynthetic pigments (Chl a, b and total Chl) and deceased formation of ROS and viable cells in roots. Therefore, concluded that sufficient dose of B could be beneficial for barley plant in improving the tolerance to NaCl stress.


Sign in / Sign up

Export Citation Format

Share Document