scholarly journals IMPACT OF THE PANDEMIC COVID-19 TO THE INDONESIA SEAS

2022 ◽  
Vol 40 (1) ◽  
pp. 30-36
Author(s):  
Yudi N. IHSAN ◽  
◽  
Noir P. PURBA ◽  
Ibnu FAIZAL ◽  
Agnes ANYA ◽  
...  

This paper presents the effect of the COVID-19 pandemic on the Indonesian seas from April to October 2020. Data were mainly obtained through literature studies focusing on coastal and ecosystem services, noise observation in the ocean, and in-situ data for atmospheric conditions. The results of this study found that the pandemic has given the oceans and ecosystems time to recover from anthropogenic stresses even though the tourism and fisheries sectors have experienced strong economic shocks. A decrease in the amount of pollution in several major cities in Indonesia was also found during the pandemic period.

Author(s):  
Gathot Winarso ◽  
Yennie Marini

The MODIS-estimated chlorophyll-a information was widely used in some operational application in Indonesia. However, there is no information about the performance of MODIS chlorophyll-a in Indonesian seas and there is no data used in development of algorithm was taken in Indonesian seas. Even the algorithm was validated in other area, it is important to know the performance of the algorithm work in Indonesian seas. Performance of MODIS Standard (OC3) algorithm at Indonesian seas was analyzed in this paper. The in-situ chlorophyll-a concentration data was collected during MOMSEI (Monsoon Offset Monitoring and Its Social and Ecosystem Impact) 2012 Cruise 25th April – 12th   May 2012 and also from archived data of the Research and Development Center for Marine Coastal Resources, Agency of Marine and Fisheries Research and Development, Indonesian Ministry of  Marine Affairs and Fisheries. The in-situ data used in this research is located in Indian Ocean the west of Sumatera part and Pacific Ocean the north of Papua Province part. Satellite data which is used is Ocean Color MODIS Level-2 Product that downloaded from NASA and MODIS L-0 from LAPAN Ground Station. MODIS Level 0 from LAPAN then processed to Level-2  using latest SeaDAS Software. The match-up resulted the MNB(%) is -4.8% that means satellite-estimated was underestimate in 4.8 % and RMSE is 0.058. When the data was separated following to the data source, the correlation and trend line equation became better. From MOMSEI Cruise data, the MNB(%) was -18.8% and RMSE 0.05. From Pacific Ocean Data, MNB (%) was -27 % and RMSE 0.049. From SONNE Cruise 2005, MNB (%) was -27 % and RMSE 0.049. MODIS standard algorithm is work well in Indonesia case-1 seawaters, which contain chlorophyll-a only, and derived that influence to the electromagnetic wave.


Author(s):  
Armyanda Tussadiah ◽  
Joko Subandriyo ◽  
Sari Novita ◽  
Widodo Setyo Pranowo

Dissolved oxygen (DO) is one of the most chemical primary data in supported life for marine organisms. Ministry of Marine Affairs and Fisheries Republic of Indonesia through Infrastructure Development for Space Oceanography (INDESO) Project provides dissolved oxygen data services in Indonesian Seas for 7 days backward and 10 days ahead (9,25 km x 9.25 km, 1 daily). The data based on Biogeochemical model (PISCES) coupled with hydrodynamic model (NEMO), with input data from satellite acquisition. This study investigated the performance and accuracy of dissolved oxygen from PISCES model, by comparing with the measurement in situ data in Indonesian Seas specifically in three outermost islands of Indonesia (Biak Island, Rote Island, and Tanimbar Island). Results of standard deviation values between in situ DO and model are around two (St.dev ± 2). Based on the calculation of linear regression between in situ DO with the standard deviation obtained a high determinant coefficient, greater than 0.9 (R2 ≥ 0.9). Furthermore, RMSE calculation showed a minor error, less than 0.05. These results showed that the equation of the linear regression might be used as a correction equation to gain the verified dissolved oxygen.


2020 ◽  
Vol 12 (2) ◽  
pp. 288 ◽  
Author(s):  
Bonggeun Song ◽  
Kyunghun Park

The accuracy of land surface temperatures (LSTs) acquired by an unmanned aerial vehicle (UAV) was verified by comparison with in-situ LSTs of various land cover materials at the Changwon National University Campus, Changwon City, South Korea. UAV imaging and in-situ measurements were performed on 31 July and 2 August 2019. During the in-situ measurements, LST was measured at 160 points using an infrared thermometer. The linear regression model between the UAV and in-situ measurements exhibited a very high correlation on both days, with R2 values greater than 0.7004. The root mean square error (RMSE), however, was 4.030 °C on 31 July and 5.446 °C on 2 August and it also varied depending on the land cover type. These results may depend on various factors, such as the field of view and performance of the TIR (Thermal infrared radiance) camera, as well as the weather and atmospheric conditions. Accurately diagnosing the thermal characteristics of urban areas based on the spatial elements can be used to accurately analyze the thermal characteristics of urban areas and to make effective policy decisions. Techniques for verifying and improving the accuracy of UAV TIR LST data for various land cover materials are required to enable precise investigation of the thermal characteristics of urban areas.


2017 ◽  
Vol 82 ◽  
pp. 409-419 ◽  
Author(s):  
Daniela Braun ◽  
Alexander Damm ◽  
Eugénie Paul-Limoges ◽  
Andrew Revill ◽  
Nina Buchmann ◽  
...  

Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2554
Author(s):  
Oleg Naimark ◽  
Vladimir Oborin ◽  
Mikhail Bannikov ◽  
Dmitry Ledon

An experimental methodology was developed for estimating a very high cycle fatigue (VHCF) life of the aluminum alloy AMG-6 subjected to preliminary deformation. The analysis of fatigue damage staging is based on the measurement of elastic modulus decrement according to “in situ” data of nonlinear dynamics of free-end specimen vibrations at the VHCF test. The correlation of fatigue damage staging and fracture surface morphology was studied to establish the scaling properties and kinetic equations for damage localization, “fish-eye” nucleation, and transition to the Paris crack kinetics. These equations, based on empirical parameters related to the structure of the material, allows us to estimate the number of cycles for the nucleation and advance of fatigue crack.


2020 ◽  
pp. 1-18
Author(s):  
Lander Van Tricht ◽  
Philippe Huybrechts ◽  
Jonas Van Breedam ◽  
Johannes J. Fürst ◽  
Oleg Rybak ◽  
...  

Abstract Glaciers in the Tien Shan mountains contribute considerably to the fresh water used for irrigation, households and energy supply in the dry lowland areas of Kyrgyzstan and its neighbouring countries. To date, reconstructions of the current ice volume and ice thickness distribution remain scarce, and accurate data are largely lacking at the local scale. Here, we present a detailed ice thickness distribution of Ashu-Tor, Bordu, Golubin and Kara-Batkak glaciers derived from radio-echo sounding measurements and modelling. All the ice thickness measurements are used to calibrate three individual models to estimate the ice thickness in inaccessible areas. A cross-validation between modelled and measured ice thickness for a subset of the data is performed to attribute a weight to every model and to assemble a final composite ice thickness distribution for every glacier. Results reveal the thickest ice on Ashu-Tor glacier with values up to 201 ± 12 m. The ice thickness measurements and distributions are also compared with estimates composed without the use of in situ data. These estimates approach the total ice volume well, but local ice thicknesses vary substantially.


2016 ◽  
Vol 16 (14) ◽  
pp. 9435-9455 ◽  
Author(s):  
Matthew J. Alvarado ◽  
Chantelle R. Lonsdale ◽  
Helen L. Macintyre ◽  
Huisheng Bian ◽  
Mian Chin ◽  
...  

Abstract. Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.


2013 ◽  
Vol 8 (S300) ◽  
pp. 265-268
Author(s):  
Miho Janvier ◽  
Pascal Démoulin ◽  
Sergio Dasso

AbstractMagnetic clouds (MCs) consist of flux ropes that are ejected from the low solar corona during eruptive flares. Following their ejection, they propagate in the interplanetary medium where they can be detected by in situ instruments and heliospheric imagers onboard spacecraft. Although in situ measurements give a wide range of data, these only depict the nature of the MC along the unidirectional trajectory crossing of a spacecraft. As such, direct 3D measurements of MC characteristics are impossible. From a statistical analysis of a wide range of MCs detected at 1 AU by the Wind spacecraft, we propose different methods to deduce the most probable magnetic cloud axis shape. These methods include the comparison of synthetic distributions with observed distributions of the axis orientation, as well as the direct integration of observed probability distribution to deduce the global MC axis shape. The overall shape given by those two methods is then compared with 2D heliospheric images of a propagating MC and we find similar geometrical features.


Sign in / Sign up

Export Citation Format

Share Document