scholarly journals Approximate Asymptotic Expressions for the Electromagnetic Field and the Mutual Admittance of Slоts in a Conducting Convex Surface of Rotation in the Form of Series of Azimuthal Harmonics

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M.V. Indenbom ◽  

In this paper, we obtain approximate asymptotic expressions for the electromagnetic field and the self and mutual admittances of "single-mode" slots in a smooth convex surface of rotation of large sizes in the form of a series of azimuthal harmonics. The coefficients of the series are expressed as integrals over the wave spectrum and can be calculated numerically or as a sum series of deductions (for mutual admittances). The expressions for the coefficients are uniformly valid in the boundary surface layer, except for the vicinity of the poles of the surface of rotation, and do not have discontinuities on the caustics of the surface rays. The resulting expressions can be directly used to calculate the fields and the self and mutual admittances of annular slots. In contrast to the eigenfunction method, asymptotic expressions allow us to cover the case of an arbitrary-shaped surface and avoid summing slowly converging double series. A comparison of the results of calculating the admittances of annular slots in a conducting spherical surface obtained by the proposed method and the method of eigenfunctions was executed, and their good agreement shown even for a small radius of the sphere equal to 3λ.

2014 ◽  
Vol 215 ◽  
pp. 385-388
Author(s):  
Valter A. Ignatchenko ◽  
Denis S. Tsikalov

Effects of both the phase and the amplitude inhomogeneities of different dimensionalities on the Greens function and on the one-dimensional density of states of spin waves in the sinusoidal superlattice have been studied. Processes of multiple scattering of waves from inhomogeneities have been taken into account in the self-consistent approximation.


2015 ◽  
Vol 29 (29) ◽  
pp. 1550175 ◽  
Author(s):  
N. H. Abd El-Wahab ◽  
Ahmed Salah

We study the interaction between a single mode electromagnetic field and a three-level [Formula: see text]-type atom in the presence of a classical homogenous gravitational field when the atom is prepared initially in the momentum eigenstate. The model includes the detuning parameters and the classical homogenous gravitational field. The wave function is calculated by using the Schrödinger equation for a coherent electromagnetic field and an atom is in its excited state. The influence of the detuning parameter and the classical homogenous gravitational field on the temporal behavior of the mean photon number, the normalized second-order correlation function and the normal squeezing is analyzed. The results show that the presence of these parameters has an important effect on these phenomena. The conclusion is reached and some features are given.


2011 ◽  
Vol 55-57 ◽  
pp. 1200-1205
Author(s):  
Liang Nie ◽  
Jun Han ◽  
Xu Jiang

The fiber point diffraction technology is applied in interferometer to measure optical surface with high precision. The wavefront diffracted from the single mode fiber with microns core diameter can be considered as ideal spherical wave and used as the referenced wave in interferometry. To estimate the quality of diffracted wavefront, the theoretical model of optical point diffraction is introduced at first. Based on the model, the influence of fiber core diameter, deformation and end-face shape on wavefront error is studied with numerical analysis. The analysis result shows that the single mode fiber used in experiment is available for instrument design and its influence over systematic error should be negligible within certain numerical aperture. Then a point diffraction interferometer with a single fiber is designed. Compared with the double fiber system, it has merit of noise immunity, high fringe contrast and high performance. Finally, the fiber point diffraction interferometer system is put up to measure spherical surface in experiment. The interference fringes are collected and analyzed with five-step shifting, least squares unwrapping and Zernike fitting method. The results show that the interferometer with optical fiber has achieved a worthy measurement precision and has great development potential.


1974 ◽  
Vol 76 (1) ◽  
pp. 359-367 ◽  
Author(s):  
P. A. Hogan

In this paper we derive the Lorentz-Dirac equation of motion for a charged particle moving in an external electromagnetic field. We use Maxwell's electromagnetic field equations together with the assumptions (1) that all fields are retarded and (2) that the 4-force acting on the charged particle is a Lorentz 4-force. To define the self-field on the world-line of the charge we utilize a contour integral representation for the field due to A. W. Conway. This by-passes the need to define an ‘average field’. In an appendix the case of a scalar field is briefly discussed.


2009 ◽  
Vol 07 (05) ◽  
pp. 1001-1007 ◽  
Author(s):  
JIAN-SONG ZHANG ◽  
AI-XI CHEN

We investigate the entanglement dynamics in a quantum system consisting of three two-level atoms resonantly coupled to a single mode electromagnetic field in a cavity. An explicit analytical solution of the system is obtained and the entanglement of the system is studied with the help of the concurrence and tangle. It is also shown that the W states could be generated if the interaction time of the two-level atoms and the cavity field is chosen appropriately.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050059
Author(s):  
IANCU DIMA ◽  
RACHEL POPP ◽  
ROBERT S. STRICHARTZ ◽  
SAMUEL C. WIESE

We construct a surface that is obtained from the octahedron by pushing out four of the faces so that the curvature is supported in a copy of the Sierpinski gasket (SG) in each of them, and is essentially the self similar measure on SG. We then compute the bottom of the spectrum of the associated Laplacian using the finite element method on polyhedral approximations of our surface, and speculate on the behavior of the entire spectrum.


Sign in / Sign up

Export Citation Format

Share Document