scholarly journals Fermentation Quality and Nutritional Traits of Cluster Bean-Maize Mixture Silages

Author(s):  
Mahmut KAPLAN ◽  
Mevlüt AKÇURA
Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 232
Author(s):  
Antonio Gallo ◽  
Francesca Ghilardelli ◽  
Alberto Stanislao Atzori ◽  
Severino Zara ◽  
Barbara Novak ◽  
...  

Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


2021 ◽  
Vol 9 (3) ◽  
pp. 644
Author(s):  
Guilin Du ◽  
Jiping Shi ◽  
Jingxian Zhang ◽  
Zhiguo Ma ◽  
Xiangcen Liu ◽  
...  

The fermentation of leaf vegetable waste to produce animal feed reduces the environmental impact of vegetable production and transforms leaf vegetable waste into a commodity. We investigated the effect of exogenous probiotics and lignocellulose enzymes on the quality and microbial community of fermented feed (FF) produced from cabbage waste. The addition of exogenous probiotics resulted in increased crude protein (CP) content (p < 0.05), better odor (moderate organic acid and ethanol, with low ammonia-N, p < 0.05), and a lower relative abundance (RA) of pathogens (below 0.4%, p < 0.05) in FF, compared to without. With the addition of exogenous probiotics, only Pediococcus and Saccharomyces were enriched and symbiotic in FF; these were the keystone taxa to reduce the abundance of aerobic, form-biofilms, and pathogenic microorganisms, resulting in an efficient anaerobic fermentation system characterized by facultative anaerobic and Gram-positive bacterial communities, and undefined saprotroph fungal communities. Thus, inoculation of vegetable waste fermentation with exogenous probiotics is a promising strategy to enhance the biotransformation of vegetable waste into animal feed.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Runbo Luo ◽  
Yangdong Zhang ◽  
Fengen Wang ◽  
Kaizhen Liu ◽  
Guoxin Huang ◽  
...  

The objective was to study the effects of sugar cane molasses addition on the fermentation quality and tastes of alfalfa silage. Fresh alfalfa was ensiled with no additive (Control), 1% molasses (M1), 2% molasses (M2), and 3% molasses (M3) for 206 days. The chemical composition and fermentation characteristics of the alfalfa silages were determined, the microbial communities were described by 16S rRNA sequencing, and the tastes were evaluated using an electronic tongue sensing system. With the amount of added molasses (M), most nutrition (dry matter and crude protein) was preserved and water-soluble carbohydrates (WSC) were sufficiently used to promote the fermentation, resulting in a pH reduction from 5.16 to 4.48. The lactic acid (LA) content and LA/acetic acid (AA) significantly increased, indicating that the fermentation had turned to homofermentation. After ensiling, Enterococcus and Lactobacillus were the dominant genus in all treatments and the undesirable microbes were inhibited, resulting in lower propionic acid (PA), butyric acid (BA), and NH3-N production. In addition, bitterness, astringency, and sourness reflected tastes of alfalfa silage, while umami and sourness changed with the amount of added molasses. Therefore, molasses additive had improved the fermentation quality and tastes of alfalfa silage, and the M3 group obtained the ideal pH value (below 4.5) and the best condition for long-term preservation.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 177
Author(s):  
Shengnan Sun ◽  
Zhenping Hou ◽  
Qiuzhong Dai ◽  
Duanqin Wu

The aim of this study was to investigate the effects of the forage type and chop length of ramie (Boehmeria nivea (L.) Gaud.) silage on rumen fermentation and ruminal microbiota in black goats. Sixteen Liuyang black goats (22.35 ± 2.16 kg) were fed with the roughage of corn silage or ramie silage at chop lengths of 1, 2, or 3 cm. The Chao 1 index and the observed number of microbial species differed significantly between the corn and ramie silage groups (p < 0.05); however, Firmicutes (relative proportion: 34.99–56.68%), Bacteroidetes (27.41–47.73%), and Proteobacteria (1.44–3.92%) were the predominant phyla in both groups. The relative abundance of Verrucomicrobia (0.32–0.82%) was lowest for the 2 and 3 cm chop lengths (p < 0.05) and was negatively correlated with rumen pH and propionic acid concentration (p < 0.05), but positively correlated with the ratio of acetic acid to propionic acid (p < 0.05). The ramie silage fermentation quality was highest for the 1 cm chop length, suggesting that moderate chopping produces optimal quality silage.


2017 ◽  
Vol 26 (4) ◽  
pp. 853-860 ◽  
Author(s):  
Chunwang Dong ◽  
Hongkai Zhu ◽  
Jinjin Wang ◽  
Haibo Yuan ◽  
Jiewen Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document