scholarly journals Effect of ethylene on physiological and biochemical parameters in different crop plants - A review

2015 ◽  
Vol 7 (2) ◽  
pp. 1064-1069 ◽  
Author(s):  
Kanchan Pahwa ◽  
Navita Ghai

A phytohormone may be defined as an organic substance other than a nutrient active in very minute amounts which is formed in certain parts of all plants and which is usually translocated to other sites, where it evokes specific biochemical, physiological and morphological responses. The gaseous plant hormone ethylene modulates many internal processes and growth responses to environmental stimuli. Ethylene is known to exert its effects by altering gene expression both at transcriptional and post-transcriptional level. Ethylene has long beenrecognized as a growth inhibitor, but evidence is accumulating that ethylene can also promote growth. Therefore, the concept of ethylene as a general growth inhibitor needs reconsideration. Different authors screened various concentrations viz. 100 ppm, 150 ppm which promotes the plant growth in groundnut, soybean, mustard, barley, pigeonpea etc. The lower concentration of ethylene (100ppm) has increased the yield by 17 percent in pigeonpea. It increased the yield by manipulating source-sink relationships and flower retention The present study highlights the various processes of growth stimulated by ethylene and its use in enhancing yield of various crop species. It could be inferred that lower concentration of ethrel sprayed at pre-flowering stage promoted the growth and yield of various crops (barley, corn, groundnut, pigeonpea, soybean etc.).

2019 ◽  
Vol 16 (04) ◽  
pp. 697-709 ◽  
Author(s):  
Waquar Akhter Ansari ◽  
Neelam Atri ◽  
Maneesh Pandey ◽  
Anil Kumar Singh ◽  
Bijendra Singh ◽  
...  

Drought poses the most significant environmental constrain that limits the growth and yield efficiency of vegetables around the world. The major challenges lies is to identify potential genetic resources and technology development that improve quality and productivity of vegetable crops under declining land, reducing natural resources and increasing environmental stresses. Varied responses of different crop species/genotypes to water-deficit condition have been studied for a long time, and several morphological, physiological and biochemical characters have been suggested to be responsible for drought tolerance. Understanding the morphological, physiological and biochemical responses to drought is essential for a holistic perception of plant resistance mechanisms to water-limited conditions and also to design screening techniques for drought tolerance that may be employed in crop breeding. Drought stress lead to the overproduction of reactive oxygen species (ROS) in plants which inactivate enzymes and damage important cellular components. The effects of the action of free radicals on membranes include the induction of lipid peroxidation and fatty acid de-esterification. Plants possess very efficient enzymatic and non-enzymatic antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. In this review the important morphological, physiological and biochemical traits that are influenced by drought stress, and may be important indices for identification/screening of drought tolerant genotypes in vegetable crops has been described.


2007 ◽  
Vol 43 (1) ◽  
pp. 95-105
Author(s):  
O. G. Zinkovskiy ◽  
V. D. Solomatina ◽  
A. S. Potrokhov ◽  
N. A. Mogilevich

2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 412
Author(s):  
Ivan Bjelanovic ◽  
Phil Comeau ◽  
Sharon Meredith ◽  
Brian Roth

A few studies in young mixedwood stands demonstrate that precommercial thinning of aspen at early ages can improve the growth of spruce and increase stand resilience to drought. However, information on tree and stand responses to thinning in older mixedwood stands is lacking. To address this need, a study was initiated in 2008 in Alberta, Canada in 14 boreal mixedwood stands (seven each at ages 17 and 22). This study investigated growth responses following thinning of aspen to five densities (0, 1000, 2500, 5000 stems ha−1 and unthinned (control)). Measurements were collected in the year of establishment, and three and eight years later. Mortality of aspen in the unthinned plots was greater than in the thinned plots which were not significantly different amongst each other. Eight years following treatment, aspen diameter was positively influenced by thinning, while there was no effect on aspen height. The density of aspen had no significant effect on the survival of planted spruce. Spruce height and diameter growth increased with both aspen thinning intensity and time since treatment. Differentiation among treatments in spruce diameter growth was evident three years from treatment, while differentiation in height was not significant until eight years following treatment. Yield projections using two growth models (Mixedwood Growth Model (MGM) and Growth and Yield Projection System (GYPSY)) were initialized using data from the year eight re-measurements. Results indicate that heavy precommercial aspen thinning (to ~1000 aspen crop trees ha−1) can result in an increase in conifer merchantable volume without reducing aspen volume at the time of harvest. However, light to moderate thinning (to ~2500 aspen stems ha−1 or higher), is unlikely to result in gains in either deciduous or conifer merchantable harvest volume over those of unthinned stands.


2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manish Pandey ◽  
Radha Krishna Paladi ◽  
Ashish Kumar Srivastava ◽  
Penna Suprasanna

AbstractPlant bioregulators (PBRs) represent low-cost chemicals for boosting plant defense, especially under stress conditions. In the present study, redox based PBRs such as thiourea (TU; a non-physiological thiol-based ROS scavenger) and hydrogen peroxide (H2O2; a prevalent biological ROS) were assessed for their ability to mitigate NaCl stress in rice variety IR 64. Despite their contrasting redox chemistry, TU or H2O2 supplementation under NaCl [NaCl + TU (NT) or NaCl + H2O2 (NH)] generated a reducing redox environment in planta, which improved the plant growth compared with those of NaCl alone treatment. This was concomitant with better K+ retention and upregulated expression of NaCl defense related genes including HAK21, LEA1, TSPO and EN20 in both NT and NH treated seedlings. Under field conditions, foliar applications of TU and H2O2, at vegetative growth, pre-flowering and grain filling stages, increased growth and yield attributes under both control and NaCl stress conditions. Principal component analysis revealed glutathione reductase dependent reduced ROS accumulation in source (flag leaves) and sucrose synthase mediated sucrose catabolism in sink (developing inflorescence), as the key variables associated with NT and NH mediated effects, respectively. In addition, photosystem-II efficiency, K+ retention and source-sink relationship were also improved in TU and H2O2 treated plants. Taken together, our study highlights that reducing redox environment acts as a central regulator of plant’s tolerance responses to salt stress. In addition, TU and H2O2 are proposed as potential redox-based PBRs for boosting rice productivity under the realistic field conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 271
Author(s):  
Jing Chen ◽  
Liantao Liu ◽  
Zhanbiao Wang ◽  
Hongchun Sun ◽  
Yongjiang Zhang ◽  
...  

The objective of this study was to assess the impacts of nitrogen on the physiological characteristics of the source–sink system of upper fruiting branches under various amounts of nitrogen fertilization. A two-year field experiment was conducted with a Bt cotton cultivar in the Yellow River Basin of China. The growth and yield of cotton of the upper fruiting branches were compared under four nitrogen levels: Control (N0, 0 kg ha−1), low nitrogen (N1, 120 kg ha−1), moderate nitrogen (N2, 240 kg ha−1), and high nitrogen (N3, 480 kg ha−1). The results indicated that in the subtending leaves in upper fruiting branches, chlorophyll content, protein content, and peroxidase (POD) activity dramatically increased with nitrogen application, reaching the highest under the moderate nitrogen treatment. The physiological characters in the seeds had the same trends as in the subtending leaves. Furthermore, the moderate nitrogen rate (240 kg ha−1) had a favorable yield and quality. Our results supported that a moderate nitrogen rate (240 kg ha−1) could coordinate the source–sink growth of cotton in the late stage, enhance the yield and fiber quality, and decrease the cost of fertilizer in the Yellow River Basin of China and other similar ecological areas.


Sign in / Sign up

Export Citation Format

Share Document