Influence of protein kinase KIN10 gene expression on root phenotype of Arabidopsis thaliana root system under condition of energy stress

2016 ◽  
Vol 50 (4) ◽  
pp. 215-220 ◽  
Author(s):  
E. E. Krasnoperova ◽  
S. V. Isayenkov ◽  
A. I. Yemets ◽  
Ya. B. Blume
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1321-1321
Author(s):  
Guangyan C Sun ◽  
Anna C Shvab ◽  
Bin C Li ◽  
Felipe C Beckedorff ◽  
Guy Jacques Leclerc ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the leading cause of cancer-related death in children, and cure rates for relapsed/refractory ALL in children and adults remain dismal, highlighting the need for novel targeted therapies capable of overcoming resistance in relapsed/refractory disease. We previously uncovered that ALL cells are vulnerable to metabolic/energy stress and endoplasmic reticulum (ER)-stress via AMP-activated protein kinase (AMPK) activation leading to unfolded protein response (UPR)-mediated apoptosis. In order to identify genome-wide metabolic-stress and AMPK-transcriptionally regulated genes in ALL cells undergoing metabolic/energy stress, we used RNA-Seq and compared mRNA transcript profiles in ALL cells treated with acadesine (adenosine analog 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside or AICAR), known to activate AMPK. RNA-Seq data indicated that acadesine treatment (15 mM/45 min) induced a robust and rapid alteration in gene expression in ALL cells. The most significant acadesine-induced gene signature represented a cluster of genes known as immediate early genes (IEGs), which are fundamental in critical biological pathways for cell survival/proliferation/adaptation. We interpreted these changes as a compensatory pro-survival mechanism in ALL cells undergoing energy/metabolic stress. Among the acadesine-induced downregulated IEGs, we selected DUSP1, JUNB and NFKBIA for further characterization. Downregulation of these IEGs was confirmed using RT-qPCR. We found that the effect of acadesine-induced downregulation on IEGs expression was dose- and time-dependent, and these effects were observed in other cell types (HeLa, HEK293T, mouse embryonic fibroblasts(MEF)), indicating this mechanism of acadesine-induced downregulation of IEGs expression is conserved in mammalian cells. Interestingly, when we used lower doses of acadesine (the half-maximal inhibition concentration for IEGs (IC50)), the IEGs mRNA levels returned to baseline after 3 hours of exposure, suggesting the effect of acadesine on these IEGs was transient at IC50 dose. Using NALM6 AMPKα1 knockdown and MEF AMPKα1/α2 knockout cell lines, we uncovered that high-dose/short-time exposure to acadesine led to changes in IEGs expression that were independent of AMPK. Consistent with these findings, ALL cells co-treated with acadesine plus adenosine kinase inhibitors (ABT702 or 5-Iodotubercidin), which prevent its conversion to ZMP, exhibited the same gene expression signature. Characterization of acadesine's mechanism of action identified protein kinase D1 (PKD1) as responsible for acadesine-induced downregulation of IEGs. PKD1 is a serine/threonine protein kinase involved in many cellular processes important to cancer development and progression, including proliferation, survival, apoptosis, motility, cell adhesion and angiogenesis. Acadesine induced strong inhibition of PKD1 activity which resulted in PKD1 accumulation in the cytoplasm and prevented its nuclear translocation. When ALL cells were treated with protein kinase D (PKD) inhibitors (CRT0066101, GF109203X), we observed a similar rapid, robust and transient downregulation of IEGs, suggesting acadesine interacts with the PKD1 pathway. Conversely, the effect of acadesine on IEGs expression was abrogated by phorbol 12-myristate 13-acetate (PMA), a direct activator of PKD. Further, we determined that acadesine suppresses PKD1-regulated class II Histone deacetylase (HDAC4/5) phosphorylation and nuclear export, which led to decreased histone H3 acetylation levels at the IEG's promoter region. Finally, ChIP-qPCR experiments uncovered that the acadesine/PKD1 axis regulates the recruitment of nuclear factor-κB (NF-κB) to the promoter region of selected IEGs. Consequently, we have identified a novel, AMPK-independent transcription regulation mechanism of acadesine thorugh PKD1 in ALL cells, and co-targeting PDK1 and other pro-survival stress response pathways in ALL cells vulnerable to energy/metabolic stress offers potential novel strategies to overcome therapeutic resistance. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 552-557 ◽  
Author(s):  
Naohisa Tamura ◽  
Hiroshi Itoh ◽  
Yoshihiro Ogawa ◽  
Osamu Nakagawa ◽  
Masaki Harada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document