scholarly journals Substitutional Studies of Powdered Palm Kernel Shell (PPKS) for Carbon Black, Kaolin and Calcium Carbonate as Fillers in Natural Rubber Compounding

2020 ◽  
Vol 13 (4) ◽  
Author(s):  
Awatefe KJ
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dosu Malomo ◽  
Abdulhakeem D Olasupo ◽  
Abayomi M Adesigbin ◽  
Owen Egharevba ◽  
Sulaiman O Adewuyi ◽  
...  

Palm kernel shell was activated using chemical activation of H3PO4 and KOH. Various amounts of activated palm kernel shell (APKS) couple with carbon black (CB) and other conventional ingredients were used to produce natural rubber vulcanizates (NR vulcanizates). The NR vulcanizates were compounded on a two-row mill and tested for its physico-mechanical properties. The results for characterization of physicochemical properties carried out on APKS  were ash content (2.06%), moisture content (8.06%), %carbon (54.41%), particle size (4.00, 3.35, 2.00, 1.18mm), bulk density (0.62g/ml) and pH (5.3).The results show significant values for all, the moisture and ash content were within the recommended standard of ASTM (3-10max) and (< or =8) respectively. The filler loading concentrations CB/APKS were labeled as mixes 1 to 7. The composition of CB/APKS filler loading ratios were 30:0, 25:5, 20:10, 15:15, 10:20, 5:25, and 0:30 samples 1,2,3,4,5,6 and 7 respectively. Results obtained showed that CB/APKS filled vulcanizates exhibited improvement in the physico-mechanical properties investigated. The results obtained for CB/APKS across the samples filler loading shows that CB composition possess higher UTS, EB and rubber fatigue test while APKS filler loading composition exhibited higher hardness and young modulus. Abrasion resistance was excellent for both CB and APKS filler loading composition.Keywords: Activated Palm Kernel Shell, filler, carbon black, Chemical Activation, Natural Rubber.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2018 ◽  
Vol 382 ◽  
pp. 94-98 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Chaiwute Vudjung ◽  
Wunchai Inthisaeng ◽  
Sansanee Srichan ◽  
Kanchana Sapprasert ◽  
...  

The present research aimed to develop natural rubber (NR) hybrid composites reinforced with calcium carbonate/carbon black (CC/CB) and calcium carbonate/silica (CC/SC). The influence of CC/CB and CC/SC with various filler ratios (120/0, 90/5, 60/10, 30/15 and 0/20) on cure characteristics and mechanical properties of the vulcanizates was investigated and their reinforcing efficiency was compared. It has been found that incorporation of CB in the hybrid filler decreases the scorch time and cure time but increases crosslink density, whereas the incorporation of silica showed cure retardation. As CB or SC content increases, stiffness, tensile strength and tear strength increase, while elongation at break and compression set decrease. Scanning electron microscopy studies also reveal poor filler dispersion and poor adhesion between filler particles and matrix in the vulcanizates with increasing in CC content in a weight filler ratio which causes inferior mechanical properties. Incorporation of CB or SC content enhanced the mechanical properties of the vulcanizates, where CC/CB hybrid system exhibited higher reinforcing efficiency compared with CC/SC hybrid system.


2011 ◽  
Vol 264-265 ◽  
pp. 646-651 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Natural rubber (NR) was reinforced with three types of filler: carbon black, calcium carbonate, and sisal fiber. NR composites were prepared on a two-roll mill. Filler content was 20 phr. Mechanical properties and cure characteristics of NR composites were studied. All NR composites had higher maximum torque than NR. NR filled with carbon black showed the highest maximum torque. However, scorch time and cure time of the NR composites were not much affected by filler types. In addition, influence of fiber treatment (alkalization) on mechanical properties and cure characteristics of sisal fiber-NR composites was investigated. Alkali treated sisal fiber-NR composite exhibited higher tensile properties and hardness than untreated sisal fiber- NR composite due to improved adhesion between the fiber and NR matrix. Moreover, alkali treated sisal fiber-NR composite had superior specific modulus and strength than NR composites filled with carbon black and calcium carbonate.


Author(s):  
Reginald Umunakwe ◽  
Obinna C Okoye ◽  
Chioma I Madueke ◽  
Daniel O Komolafe

The effect of using mixtures of palm kernel shell and coconut shell as carburizers for low carbon steel at 950oC on the tensile properties and case hardness was studied. The carburizers were washed, dried, milled and sieved to 150µm particle size. They were mixed in various compositions to serve as carburizers. In each composition, 20wt% of calcium carbonate (CaCO3) was added as energizer. Tensile and hardness specimens were machined from low carbon steel. Seven tensile and seven hardness specimens were subjected to pack carburization process with different compositions of the carburizers, and thereafter quenched and tempered at 450oC for forty five minutes in a heat treatment furnace. The tensile and hardness properties show that better properties were obtained with mixtures of the carburizers compared to the use of single carburizing agent.


Sign in / Sign up

Export Citation Format

Share Document