scholarly journals ANTIBACTERIAL AND ANTICANCER ACTIVITY OF CRUDE SECONDARY METABOLITES OF ANTAGONISTIC BACTERIAL STRAIN PSEUDOMONAS SP-KA2 ISOLATED FROM MARINE SOIL

2008 ◽  
Vol 59 (1) ◽  
pp. 101-105
Author(s):  
Irina Zarafu ◽  
Lucia Veronica Ivan ◽  
Iuliana Harasim

3,5-disubstituted-1,2,4-tiadiazoles with substituted-styril and heterocycle-vinyl were obtained by extending the method which implies the use of 3,5-disubstituted-1,2,4-ditiazolium salts as precursors [1-4]. A comparative study of the reaction process in the case of perchlorates, diacide phosphates, tribromides and 3,5-distyrile-dithiazolium triiodides, taken as etalon, was perfomed. Good yields were obtained when using perchlorates, phosphates and triiodides. The reaction was made by heating the reaction mixture and by ultrasound exposure. The structure of the compounds was confirmed by chemical and physical analysis and the data obtained were identical to those of 3,5-disubstituted-1,2,4-tiadiazoles obtained by another methods [5,6]. The biological (antibacterial and anticancer) activity of the synthesized compounds was tested and the results indicated a medium activity.


2018 ◽  
Vol 18 (5) ◽  
pp. 739-746 ◽  
Author(s):  
Raj Kaushal ◽  
Nitesh Kumar ◽  
Archana Thakur ◽  
Kiran Nehra ◽  
Pamita Awasthi ◽  
...  

Abstract: Background: After the discovery of cisplatin, first non platinum anticancer drugs having excellent efficacy were budotitane and TiCl2(cp)2 but action mechanism is not clear. Therefore, we hereby reporting synthesis and biological activities novel titanium complexes to explore their mode of action. Objectives: Synthesis, spectral characterization, antibacterial and anticancer activity of some titanium complexes. Antibacterial studies on various bacterial strains and anticancer studies on HeLa, C6, CHO cancerous cell lines have been performed. Further, the cell death mechanistic study was done on CHO cell lines. Method: Titanium complexes with and without labile groups have been synthesized by reacting of TiCl4 with nitrogen containing ligands viz. 1,2-diaminocyclohexane, 1,10-Phenanthroline, adamantylamine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine in predetermined molar ratios. Antibacterial and anticancer studies were performed by agar well diffusion method and MTT assay respectively. Cell cycle analysis is done by using flow cytometry. Results: Complex 2 i.e TiCl2(Phen)2 showed better activity than other complexes as an antibacterial as well as anticancer agent. Phase contrast imaging indicates that observed morphological changes of cells was dose dependent. Cell death mechanistic study have shown the increase in sub G0 phase population as well as formation of blebbing and fragmentation of chromatin material which is an indicative measure of apoptosis. Conclusion: Complex 2 proved to be more effective bactericide and cytotoxic agent. Cell cycle analysis showed cell arrest in G0 phase. Apoptosis percentage was found to increase in a dose dependent manner. So, prepared titanium complexes can be put to use as an important chemotherapeutic agents.


Nanomedicine ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. 1173-1189 ◽  
Author(s):  
Bhuban Ruidas ◽  
Sutapa Som Chaudhury ◽  
Kunal Pal ◽  
Prashanta Kumar Sarkar ◽  
Chitrangada Das Mukhopadhyay

2020 ◽  
Vol 23 ◽  
pp. 03009
Author(s):  
Maxim. D. Timergalin ◽  
Arina V. Feoktistova ◽  
Timur V. Rameev ◽  
Gaisar G. Khudaygulov ◽  
Sergei N. Starikov ◽  
...  

This article submits results of laboratory and field experiments on the effect of an auxin-producing bacterial strain Pseudomonas sp. DA1.2 in comparison with Pseudomonas koreensis IB-4 on wheat plants in conjunction with the “Chistalan” herbicide treatment. Our work shows the positive effect of bacterial treatments on plant growth, the relative water content in leaves and the role of bacteria in the redistribution of ABA and IAA in wheat shoots under conditions of herbicidal stress. Application of Pseudomonas sp. DA1.2 together with the herbicide in the field of the steppe zone led to an increase in yield by 20% relative to the control variant. This bacterial strain helps to overcome herbicidal stress and is a promising agent for improving the technology of using synthetic auxins herbicides.


Sign in / Sign up

Export Citation Format

Share Document