scholarly journals IN VITRO EXAMINE OF RISPERIDONE IN DRUG TABLET DOSE STRUCTURE USING REVERSE PHASE FLUID CHROMATOGRAPHIC (RP-HPLC) STRATEGY

2021 ◽  
Vol 10 (12 (SPECIAL ISSUE) PART 2) ◽  
Keyword(s):  
Rp Hplc ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Mohyeddin Assali ◽  
Murad Abualhasan ◽  
Nihal Zohud ◽  
Noura Ghazal

Background. Indomethacin is considered a potent nonsteroidal anti-inflammatory drug that could be combined with Paracetamol to have superior and synergist activity to manage pain and inflammation. To reduce the gastric side effect, they could be combined with Famotidine. Methodology. A codrug of Indomethacin and Paracetamol was synthesized and combined in solution with Famotidine. The quantification of the pharmaceutically active ingredients is pivotal in the development of pharmaceutical formulations. Therefore, a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated according to the International Council for Harmonization (ICH) Q2R1 guidelines. A reverse phase C18 column with a mobile phase acetonitrile: sodium acetate buffer 60 : 40 at a flow rate of 1.4 mL/min and pH 5 was utilized. Results. The developed method showed good separation of the four tested drugs with a linear range of 0.01–0.1 mg/mL (R2 > 0.99). The LODs for FAM, PAR, IND, and codrug were 3.076 × 10−9, 3.868 × 10−10, 1.066 × 10−9, and 4.402 × 10−9 mg/mL respectively. While the LOQs were 9.322 × 10−9, 1.172 × 10−10, 3.232 × 10−9, and 1.334 × 10−8 mg/mL, respectively. Furthermore, the method was precise, accurate, selective, and robust with values of relative standard deviation (RSD) less than 2%. Moreover, the developed method was applied to study the in vitro hydrolysis and conversion of codrug into Indomethacin and Paracetamol. Conclusion. The codrug of Indomethacin and Paracetamol was successfully synthesized for the first time. Moreover, the developed analytical method, to our knowledge, is the first of its kind to simultaneously quantify four solutions containing the following active ingredients of codrug, Indomethacin, Paracetamol, and Famotidine mixture with added pharmaceutical inactive ingredients in one HPLC run.


2020 ◽  
Vol 16 ◽  
Author(s):  
M. Alarjah

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole. Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in-vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method. Method: Chromatographic analysis was done using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37ºC. Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively. Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in-vivo study for the metronidazole derivatives with monoterpenes and eugenol.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1640
Author(s):  
Cecilia Jiménez-Sánchez ◽  
Fabián Pedregosa ◽  
Isabel Borrás-Linares ◽  
Jesús Lozano-Sánchez ◽  
Antonio Segura-Carretero

In this study, we determined the phytochemical profile of the Spanish “triguero” asparagus landrace “verde-morado” (Asparagus officinalis L.), a wild traditional landrace, and the improved “triguero” HT-801, together with two commercial green asparagus varieties. For comparison, we used reverse-phase high-performance liquid chromatography coupled with diode array electrospray time-of-flight mass spectrometry (RP-HPLC-DAD-ESI-TOF/MS) followed by a permutation test applied using a resampling methodology valid under a relaxed set of assumptions, such as i.i.d. errors (not necessarily normal) that are exchangeable under the null hypothesis. As a result, we postulate that “triguero” varieties (the improved HT-801 followed by its parent “verde-morado”) have a significantly different phytochemical profile from that of the other two commercial hybrid green varieties. In particular, we found compounds specific to the “triguero” varieties, such as feruloylhexosylhexose isomers, or isorhamnetin-3-O-glucoside, which was found only in the “triguero” variety HT-801. Although studies relating the phytochemical content of “triguero” asparagus varieties to its health-promoting effects are required, this characteristic phytochemical profile can be used for differentiating and revalorizating these asparagus cultivars.


Author(s):  
MADHURIMA BASAK ◽  
Santhosh Reddy Gouru ◽  
Animesh Bera ◽  
Krishna veni Nagappan

Objective: The present study aims at developing an accurate precise, rapid and sensitive Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for assessing Empagliflozin in bulk drug and in the pharmaceutical dosage form. Methods: The proposed method employs a Reverse Phase Shim Pack C18 column (250 mm × 4.6 mm id; 5 µm) using a mobile phase comprising of acetonitrile and water in the ratio of 60:40 v/v flushed at a flow rate of 1 ml/min. The eluents were monitored at 223 nm. Results: Empagliflozin was eluted at a retention time of 5.417 min and established a co-relation co-efficient (R2>0.999) over a concentration ranging from 0.0495-100µg/ml. Percentage recovery was obtained between 98-102% which indicated that the method is accurate. The Limit of Detection (LOD) and Limit of Quantitation (LOQ) were found at 0.0125µg/ml and 0.0495µg/ml, respectively. Conclusion: An RP-HPLC method which was relatively simple, accurate, rapid and precise was developed and its validation was performed for the quantitative analysis of empagliflozin in bulk and tablet dosage form (10 and 25 mg) in accordance to International Conference of Harmonization (ICH) Q2 (R1) guidelines. The proposed method may aid in routinely analyzing empagliflozin in pharmaceuticals.


1995 ◽  
Vol 144 (3) ◽  
pp. 517-525 ◽  
Author(s):  
S Moslemi ◽  
P Silberzahn ◽  
J-L Gaillard

Abstract Explants of equine full-term placenta have been shown to synthesize 19-norandrogens from labelled androgens. Steroid metabolites were purified by silica-gel column chromatography then analysed and quantified by C18-reverse-phase HPLC coupled to a radioactive flow detector. 19-Norandrostenedione was subsequently recrystallized to constant specific activity, providing unequivocal evidence of its synthesis by the equine placenta. 19-Norandrostenedione synthesis appeared to be localized in the microsomal fraction. Regardless of the substrate used, formation of 19-norandrogens was far weaker than that of oestrogens; moreover, the yield of 17-oxosteroids produced was much greater than that of 17β-hydroxysteroids, suggesting the presence of a dehydrogenase with predominant oxidative activity. Sulphoconjugated steroids formed were less than 0·5% of total steroids. Although 19-nortestosterone could not be generated by equine purified aromatase incubated with labelled testosterone, the synthesis of 19-norandrogens and oestrogens by equine placental explants was blocked by two specific aromatase inhibitors, 4-hydroxyandrostenedione and fadrozole. Our results provide evidence for a placental origin of at least a part of the 19-norandrogens previously identified in the blood of the pregnant mare. Furthermore, it is suggested that 19-norandrogen biosynthesis would involve the enzymatic metabolism of 19-oxygenated androgens formed by equine aromatase. Journal of Endocrinology (1995) 144, 517–525


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Katso Binang ◽  
David T. Takuwa

Abstract The aim of the study was to develop a rapid, efficient, and cheap chromatographic method for determining four selected antihypertensive active flavonoid compounds in medicinal plants in Botswana. The determination of rutin, quercetin, and kaempferol in selected medicinal plants was conducted in less than 6 min using the developed reverse phase-high performance liquid chromatography (RP-HPLC) method with a 2.7 µm Ascentis C18 express column (150 × 4.60 mm i.d) at 340, 360, and 368 nm detection wavelengths and mobile phase of methanol and 0.068% of formic acid solution in isocratic elution. Validation results showed good selectivity, linearity (r 2 > 0.99), high percentage recoveries (90.2–104.7%), and precision (% RSD < 2) for n = 3, confirming suitability of the method for determination of the investigated flavonoids in Zingiber officinale (ginger). Application of the developed RP-HPLC method was performed in selected medicinal plants (Lippia javanica ) (mosukujane), Myrothanmus flabellious (galalatshwene), and Elephantorrhiza elephantina (mositsana) used to manage hypertension by herbalists in Botswana. M. flabellious a very commonly used plant for managing hypertension was found to contain highest amounts of rutin and myricetin, whereas nothing was detected for E. elephantina.


Author(s):  
Alex O. Okaru ◽  
Kennedy O. Abuga ◽  
Franco N. Kamau ◽  
Stanley N. Ndwigah ◽  
Dirk W. Lachenmeier

A simple, isocratic and robust RP-HPLC method for the analysis of azithromycin was developed, validated and applied for the analysis of bulk samples, tablets and suspensions. The optimum chromatographic conditions for separation were established as mobile phase comprising of acetonitrile-0.1M KH2PO4 pH 6.5-0.1M tetrabutyl ammonium hydroxide pH 6.5-water (25:15:1:59% v/v/v/v) delivered at a flow rate of 1.0 ml/min. The stationary phase consisted of reverse-phase XTerra&reg; (250 mm&times; 4.6 mm i.d., 5 &micro;m particle size) maintained at a temperature of 43 &deg;C with a UV detection at 215 nm. The method was found to be linear in the range 50-150% (r2=0.997). The limits of detection and quantification were found to be 0.02% (20 &micro;g) and 0.078% (78 &micro;g) respectively with a 100.7% recovery of azithromycin. Degradation products of azithromycin in acidic and oxidative environments at 37 &deg;C were resolved from the active pharmaceutical ingredient and thus the method is fit for the purpose of drug stability confirmation.


Author(s):  
K. S Ashutosh ◽  
D. Manidipa ◽  
R. J. V. L. N. Seshagiri ◽  
S. D. Gowri

The RP-HPLC separation was carried out by reverse phase chromatography on a Symmetry C18 (4.6 x 150 mm, 3.5 μm, make: XTerra) with a mobile phase composed of sodium dihydrogen ortho phosphate [pH 2.5] and acetonitrile in the ratio of 30:70 v/v in an isocratic mode at a flow rate of 1.2 mL/min. The run time was maintained for 8.0 min. The detection was monitored at 236 nm. The accuracy was calculated in human plasma and the % recovery was found 99.80 - 99.85 for famotidine and 99.56 -99.85.5 for ibuprofen and reproducibility was found to be satisfactory. The calibration curve for famotidine in human plasma was linear over 3.32 to 6.65 μg/mL and 100- 200 μg/mL for ibuprofen in human plasma respectively. The inter-day and intra-day precision in human plasma was found within limits. The proposed method has adequate sensitivity, reproducibility, and specificity for the determination of famotidine and ibuprofen in plasma. The LLOQ obtained by the proposed method in human plasma were 1.24 and 5.0 μg/mL for famotidine and ibuprofen respectively. The proposed method is simple, fast, accurate, and precise for the quantification of famotidine and ibuprofen in plasma as per the ICH guidelines.Kathmandu University Journal of Science, Engineering and TechnologyVol. 12, No. I, June, 2016, Page: 34-48


Sign in / Sign up

Export Citation Format

Share Document