scholarly journals A Study on Deep Learning Methods for Skin Disease Classification

2021 ◽  
Vol 11 (2) ◽  
pp. 48-52
Author(s):  
N.Vanitha ◽  
M.Geetha

Dermatological disorders are one among the foremost widespread diseases within the world. Despite being common its diagnosis is extremely difficult due to its complexities of skin tone, color, presence of hair. This paper provides an approach to use various computer vision-based techniques (deep learning) to automatically predict the varied sorts of skin diseases. The system makes use of deep learning technology to coach itself with the varied skin images. the most objective of this technique is to realize maximum accuracy of disease of the skin prediction. The people health quite the other diseases. Skin diseases are mostly caused by mycosis, bacteria, allergy, or viruses, etc. The lasers advancement and Photonics based medical technology is employed in diagnosis of the skin diseases quickly and accurately. The medical equipment for such diagnosis is restricted and costliest. So, Deep learning techniques helps in detection of disease of the skin at an initial stage. The feature extraction plays a key role in classification of skin diseases. The usage of Deep Learning algorithms has reduced the necessity for human labor, like manual feature extraction and data reconstruction for classification purpose.

2018 ◽  
Vol 11 (3) ◽  
pp. 1429-1436 ◽  
Author(s):  
Sourav Kumar Patnaik ◽  
Mansher Singh Sidhu ◽  
Yaagyanika Gehlot ◽  
Bhairvi Sharma ◽  
P. Muthu

Dermatological disorders are one of the most widespread diseases in the world. Despite being common its diagnosis is extremely difficult because of its complexities of skin tone, color, presence of hair. This paper provides an approach to use various computer vision based techniques (deep learning) to automatically predict the various kinds of skin diseases. The system uses three publicly available image recognition architectures namely Inception V3, Inception Resnet V2, Mobile Net with modifications for skin disease application and successfully predicts the skin disease based on maximum voting from the three networks. These models are pretrained to recognize images upto 1000 classes like panda, parrot etc. The architectures are published by image recognition giants for public usage for various applications. The system consists of three phases- The feature extraction phase, the training phase and the testing /validation phase. The system makes use of deep learning technology to train itself with the various skin images. The main objective of this system is to achieve maximum accuracy of skin disease prediction.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
Vol 9 (2) ◽  
pp. 1051-1052
Author(s):  
K. Kavitha, Et. al.

Sentiments is the term of opinion or views about any topic expressed by the people through a source of communication. Nowadays social media is an effective platform for people to communicate and it generates huge amount of unstructured details every day. It is essential for any business organization in the current era to process and analyse the sentiments by using machine learning and Natural Language Processing (NLP) strategies. Even though in recent times the deep learning strategies are becoming more familiar due to higher capabilities of performance. This paper represents an empirical study of an application of deep learning techniques in Sentiment Analysis (SA) for sarcastic messages and their increasing scope in real time. Taxonomy of the sentiment analysis in recent times and their key terms are also been highlighted in the manuscript. The survey concludes the recent datasets considered, their key contributions and the performance of deep learning model applied with its primary purpose like sarcasm detection in order to describe the efficiency of deep learning frameworks in the domain of sentimental analysis.


2019 ◽  
pp. 129-141 ◽  
Author(s):  
Hui Xian Chia

This article examines the use of artificial intelligence (AI) and deep learning, specifically, to create financial robo-advisers. These machines have the potential to be perfectly honest fiduciaries, acting in their client’s best interests without conflicting self-interest or greed, unlike their human counterparts. However, the application of AI technology to create financial robo-advisers is not without risk. This article will focus on the unique risks posed by deep learning technology. One of the main fears regarding deep learning is that it is a “black box”, its decision-making process is opaque and not open to scrutiny even by the people who developed it. This poses a significant challenge to financial regulators, whom would not be able to examine the underlying rationale and rules of the robo-adviser to determine its safety for public use. The rise of deep learning has been met with calls for ‘explainability’ of how deep learning agents make their decisions. This paper argues that greater explainability can be achieved by describing the ‘personality’ of deep learning robo-advisers, and further proposes a framework for describing the parameters of the deep learning model using concepts that can be readily understood by people without technical expertise. This regards whether the robo-adviser is ‘greedy’, ‘selfish’ or ‘prudent’. Greater understanding will enable regulators and consumers to better judge the safety and suitability of deep learning financial robo-advisers.


2018 ◽  
Author(s):  
Sibel Çimen ◽  
Abdulkerim Çapar ◽  
Dursun Ali Ekinci ◽  
Umut Engin Ayten ◽  
Bilal Ersen Kerman ◽  
...  

AbstractOligodendrocytes wrap around the axons and form the myelin. Myelin facilitates rapid neural signal transmission. Any damage to myelin disrupts neuronal communication leading to neurological diseases such as multiple sclerosis (MS). There is no cure for MS. This is, in part, due to lack of an efficient method for myelin quantification during drug screening. In this study, an image analysis based myelin sheath detection method, DeepMQ, is developed. The method consists of a feature extraction step followed by a deep learning based binary classification module. The images, which were acquired on a confocal microscope contain three channels and multiple z-sections. Each channel represents either oligodendroyctes, neurons, or nuclei. During feature extraction, 26-neighbours of each voxel is mapped onto a 2D feature image. This image is, then, fed to the deep learning classifier, in order to detect myelin. Results indicate that 93.38% accuracy is achieved in a set of fluorescence microscope images of mouse stem cell-derived oligodendroyctes and neurons. To the best of authors’ knowledge, this is the first study utilizing image analysis along with machine learning techniques to quantify myelination.


Author(s):  
Junanda Patihullah ◽  
Edi Winarko

Social media has changed the people mindset to express thoughts and moods. As the activity of social media users increases, it does not rule out the possibility of crimes of spreading hate speech can spread quickly and widely. So that it is not possible to detect hate speech manually. GRU is one of the deep learning methods that has the ability to learn information relations from the previous time to the present time. In this research feature extraction used is word2vec, because it has the ability to learn semantics between words. In this research the GRU performance will be compared with other supervision methods such as support vector machine, naive bayes, decision tree and logistic regression. The results obtained show that the best accuracy is 92.96% by the GRU model with word2vec feature extraction. The use of word2vec in the comparison supervision method is not good enough from tf and tf-idf.


2022 ◽  
Vol 31 (2) ◽  
pp. 835-851
Author(s):  
Ramya G. Franklin ◽  
B. Muthukumar

Author(s):  
G. Rama Janani

The paper is based on classification of respiratory illness like covid 19 and pneumonia by using deep learning. The symptoms of COVID-19 and pneumonia are similar. Due to this, it is often difficult to identify what is causing your condition without being tested for COVID-19 or other respiratory infections. To find out how COVID-19 and pneumonia differs from one another, this paper presents that a novel Convolutional Neural Network in Tensor Flow and Keras based Covid-19 pneumonia classification. The proposed system supported implements CNN using Pneumonia images to classify the Covid-19, normal, pneumonia. The knowledge from these studies can potentially help in diagnosis of the concerned disease. It is predicted that the success of the anticipated results will increase if the CNN method is supported by adding extra feature extraction methods for classifying covid-19 and pneumonia successfully thereby improving the efficacy and potential of using deep CNN to pictures.


Author(s):  
Shravani Kharat ◽  
Pooja Shinde ◽  
Preeti Malwadkar ◽  
Dipti Chaudhari

Globally, skin diseases are among the most common health problems in all humans irrespective of age. Prevention and early detection of these diseases can improve the chance of surviving. This model illustrates the identification of skin diseases providing more objective and reliable solutions using deep learning technology and convolutional neural network approach. In this model, the system design, implementation and identification of common skin diseases such as acne, blister, eczema, warts etc. are explained. The system applies deep learning technology to train itself with various images of skin diseases from the Kaggle platform. The accuracy obtained by using deep learning is 83.23%. The main objective of this system is to achieve maximum accuracy of skin disease prediction. Moreover, if the disease is identified the system provides detailed information about the diseases along with home remedies.


Sign in / Sign up

Export Citation Format

Share Document